Abstract
Monitoring the state of currently running processes and reacting to deviations during runtime is a key challenge in Business Process Management (BPM). The MAPE-K control loop describes four phases for approaching this challenge: Monitor, Analyze, Plan, Execute. In this paper, we present the ProGAN framework, an idea of an approach for implementing the monitor, analyze, and plan phases of MAPE-K. For this purpose, we leverage a deep learning architecture that builds upon Generative Adversarial Networks (GANs): The discriminator is used for monitoring the process in its environment by using sensor data and for detecting deviations w.r.t. the desired process state (monitor phase). The generator is used afterwards for analyzing the detected deviation and its symptoms as well as for adapting the current process to resolve the deviation and to restore the desired state. Both components are trained together by utilizing each other’s feedback in a self-supervised way. We demonstrate the application of our approach for an exemplary scenario in the manufacturing domain.
M. Hoffmann and L. Malburg—These authors contributed equally to the work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bergmann, R. (ed.): Experience Management: Foundations, Development Methodology, and Internet-Based Applications. LNCS, vol. 2432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45759-3
Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)
Dumas, M., et al.: Fundamentals of Business Process Management. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4
Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)
Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)
IBM: An architectural blueprint for autonomic computing: Autonomic Computing White Paper (2006)
Janiesch, C., et al.: The Internet of Things meets business process management: a manifesto. IEEE Syst. Man Cybern. Mag. 6(4), 34–44 (2020)
Keane, M.T., Kenny, E.M.: How case-based reasoning explains neural networks: a theoretical analysis of XAI using Post-Hoc explanation-by-example from a survey of ANN-CBR twin-systems. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 155–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_11
Klein, P., Malburg, L., Bergmann, R.: FTOnto: a domain ontology for a Fischertechnik simulation production factory by reusing existing ontologies. In: Proceedings of the Conference on LWDA, vol. 2454, pp. 253–264. CEUR-WS.org (2019)
Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in business process monitoring: a comparison of deep learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 63(3), 261–276 (2020). https://doi.org/10.1007/s12599-020-00645-0
Malburg, L., Seiger, R., Bergmann, R., Weber, B.: Using physical factory simulation models for business process management research. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp. 95–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5_8
Malburg, L., et al.: Object detection for smart factory processes by machine learning. Procedia Comput. Sci. 184, 581–588 (2021)
Malburg, L., Klein, P., Bergmann, R.: Semantic web services for AI-research with physical factory simulation models in Industry 4.0. In: Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics (IN4PL), pp. 32–43. SCITEPRESS (2020)
Marrella, A., Mecella, M., Sardiña, S.: Intelligent process adaptation in the SmartPM system. ACM Trans. Intell. Syst. Technol. 8(2), 25:1–25:43 (2017)
Metzger, A., Kley, T., Palm, A.: Triggering proactive business process adaptations via online reinforcement learning. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 273–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_16
Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets. CoRR abs/1411.1784 (2014)
Müller, G.: Workflow Modeling Assistance by Case-Based Reasoning. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-658-23559-8
Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29
Rama-Maneiro, E., Vidal, J.C., Lama, M.: Deep Learning for Predictive Business Process Monitoring: Review and Benchmark. CoRR abs/2009.13251 (2020)
Rehse, J.-R., Mehdiyev, N., Fettke, P.: Towards explainable process predictions for Industry 4.0 in the DFKI-Smart-Lego-Factory. KI - Künstliche Intelligenz 33(2), 181–187 (2019). https://doi.org/10.1007/s13218-019-00586-1
Schönig, S., Ackermann, L., Jablonski, S., Ermer, A.: IoT meets BPM: a bidirectional communication architecture for IoT-aware process execution. Softw. Syst. Model. 19(6), 1443–1459 (2020). https://doi.org/10.1007/s10270-020-00785-7
Seiger, R., Aßmann, U.: Consistency and synchronization for workflows in cyber-physical systems. In: Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pp. 312–313. ACM (2019)
Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive workflows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2017). https://doi.org/10.1007/s10270-017-0639-0
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business process monitoring via generative adversarial nets: the case of next event prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_14
van der Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013(1), 1–37 (2013)
Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process monitoring for recommending next best actions. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 193–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_12
Wieland, M., et al.: Towards situation-aware adaptive workflows: SitOPT - a general purpose situation-aware workflow management system. In: International Conference on Pervasive Computing and Communication Workshops, pp. 32–37. IEEE (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Hoffmann, M., Malburg, L., Bergmann, R. (2022). ProGAN: Toward a Framework for Process Monitoring and Flexibility by Change via Generative Adversarial Networks. In: Marrella, A., Weber, B. (eds) Business Process Management Workshops. BPM 2021. Lecture Notes in Business Information Processing, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-030-94343-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-94343-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94342-4
Online ISBN: 978-3-030-94343-1
eBook Packages: Computer ScienceComputer Science (R0)