Abstract
Among Unmanned Aerial Vehicles (UAV) countermeasures, the detection of the drone position and the identification of the human pilot represent two crucial tasks, as demonstrated by the attention already obtained from security agencies in different countries. Many research works focus on the UAV detection but they rarely take into account the problem of the detection of the pilot of another approaching UAV. This work proposes a full autonomous pipeline that, taking images from a flying UAV, can detect the humans in the scene and recognizing the eventual presence of the pilot(s). The system has been designed to be run on-board of the UAV, and tests have been performed on an NVIDIA Jetson TX2. Moreover, the SnT-ARG-PilotDetect dataset, designed to assess the capabilities to identify the UAV pilots in realistic scenarios, is introduced for the first time and made publicly available. An accurate comparison of different classification approaches on the pilot and non-pilot images of the proposed dataset has been performed, and results show the validity of the proposed pipeline for piloting behavior classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The dataset is available at https://github.com/dcazzato/SnT-Arg-PilotDetect.
- 2.
References
Al Abkal, S., Talas, R.H.A., Shaw, S., Ellis, T.: The application of unmanned aerial vehicles in managing port and border security in the us and Kuwait: reflections on best practice for the UK. Int. J. Marit. Crime Secur. 1(1) (2020)
Alsalam, B.H.Y., Morton, K., Campbell, D., Gonzalez, F.: Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture. In: 2017 IEEE Aerospace Conference, pp. 1–12. IEEE (2017)
Avola, D., Foresti, G.L., Martinel, N., Micheloni, C., Pannone, D., Piciarelli, C.: Aerial video surveillance system for small-scale UAV environment monitoring. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)
Biallawons, O., Klare, J., Fuhrmann, L.: Improved uav detection with the mimo radar mira-cle ka using range-velocity processing and tdma correction algorithms. In: 2018 19th International Radar Symposium (IRS), pp. 1–10. IEEE (2018)
Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Bisio, I., Garibotto, C., Lavagetto, F., Sciarrone, A., Zappatore, S.: Unauthorized amateur uav detection based on wifi statistical fingerprint analysis. IEEE Commun. Mag. 56(4), 106–111 (2018)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. In: arXiv preprint arXiv:1812.08008 (2018)
Cazzato, D., Cimarelli, C., Voos, H.: A preliminary study on the automatic visual based identification of uav pilots from counter uavs. In: VISIGRAPP (5: VISAPP), pp. 582–589 (2020)
Cazzato, D., Olivares-Mendez, M.A., Sanchez-Lopez, J.L., Voos, H.: Vision-based aircraft pose estimation for uavs autonomous inspection without fiducial markers. In: IECON 2019–45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 5642–5648. IEEE (2019)
Chen, W.H., Hsu, S.H., Shen, H.P.: Application of svm and ann for intrusion detection. Comput. Oper. Res. 32(10), 2617–2634 (2005)
Christnacher, F., et al.: Optical and acoustical uav detection. In: Electro-Optical Remote Sensing X, vol. 9988, p. 99880B. International Society for Optics and Photonics (2016)
Dolan, A.M., et al.: Integration of drones into domestic airspace: selected legal issues (2013)
Ezuma, M., Erden, F., Anjinappa, C.K., Ozdemir, O., Guvenc, I.: Micro-uav detection and classification from rf fingerprints using machine learning techniques. In: 2019 IEEE Aerospace Conference, pp. 1–13. IEEE (2019)
Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4768–4777 (2017)
Hartmann, K., Steup, C.: The vulnerability of uavs to cyber attacks-an approach to the risk assessment. In: 2013 5th International Conference on Cyber Conflict (CYCON 2013), pp. 1–23. IEEE (2013)
Huttunen, M.: Civil unmanned aircraft systems and security: the European approach. J. Transp. Secur. 12(3–4), 83–101 (2019)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Jovanoska, S., Brötje, M., Koch, W.: Multisensor data fusion for uav detection and tracking. In: 2018 19th International Radar Symposium (IRS), pp. 1–10. IEEE (2018)
Kanistras, K., Martins, G., Rutherford, M.J., Valavanis, K.P.: A survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 221–234. IEEE (2013)
Kim, I.S., Choi, H.S., Yi, K.M., Choi, J.Y., Kong, S.G.: Intelligent visual surveillance-a survey. Int. J. Control Autom. Syst. 8(5), 926–939 (2010)
Leo, M., Carcagnì, P., Mazzeo, P.L., Spagnolo, P., Cazzato, D., Distante, C.: Analysis of facial information for healthcare applications: a survey on computer vision-based approaches. Information 11(3), 128 (2020)
Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: Classification, annotation and segmentation in an automatic framework. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2036–2043. IEEE (2009)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, J., Shahroudy, A., Perez, M.L., Wang, G., Duan, L.Y., Chichung, A.K.: Ntu rgb+ d 120: a large-scale benchmark for 3d human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell., 2684–2701 (2019)
May, R., Steinheim, Y., Kvaløy, P., Vang, R., Hanssen, F.: Performance test and verification of an off-the-shelf automated avian radar tracking system. Ecol. Evol. 7(15), 5930–5938 (2017)
Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1114–1127 (2008)
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)
Schneider, D.: Electronic license plates for drones [spectral lines]. IEEE Spectr. 54, 8 (2017). https://doi.org/10.1109/MSPEC.2017.7906882
Shoufan, A., Al-Angari, H.M., Sheikh, M.F.A., Damiani, E.: Drone pilot identification by classifying radio-control signals. IEEE Trans. Inf. Forensics Secur. 13(10), 2439–2447 (2018)
Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html
Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)
Unlu, E., Zenou, E., Riviere, N.: Using shape descriptors for uav detection. Electron. Imaging 2018(9), 1–5 (2018)
Unlu, E., Zenou, E., Riviere, N., Dupouy, P.-E.: Deep learning-based strategies for the detection and tracking of drones using several cameras. IPSJ Trans. Comput. Vis. Appl. 11(1), 1–13 (2019). https://doi.org/10.1186/s41074-019-0059-x
Wang, B., Peng, X., Liu, D.: Airborne sensor data-based unsupervised recursive identification for uav flight phases. IEEE Sens. J. 20(18), 10733–10743 (2020)
Zhang, H.B., et al.: A comprehensive survey of vision-based human action recognition methods. Sensors 19(5), 1005 (2019)
Acknowledgments
We thank Prof. Dr. Miguel Angel Olivares-Mendez for his technical support in the creation of the dataset.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Cazzato, D., Cimarelli, C., Voos, H. (2022). On-board UAV Pilots Identification in Counter UAV Images. In: Bouatouch, K., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020. Communications in Computer and Information Science, vol 1474. Springer, Cham. https://doi.org/10.1007/978-3-030-94893-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-94893-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94892-4
Online ISBN: 978-3-030-94893-1
eBook Packages: Computer ScienceComputer Science (R0)