Abstract
The KARLI project consortium investigates and develops monitoring systems for drivers and other occupants with new artificial intelligence approaches, based on high quality labeled data that is collected in real vehicles. The project’s target applications are integrated in vehicles that enable various levels of automation and transitions of control. Level-compliant occupant behavior is assessed with AI algorithms and modulated with responsive and adaptive human machine interface (HMI) solutions. The project also targets the prediction and prevention of motion sickness in order to improve the user experience, enabling productivity and maintaining an adequate driver state. The user-centered approach is represented by defining five KARLI User Roles which specify the driving related behavior requirements for all levels of automation. The project results will be evaluated at the end of the project. The KARLI applications will be evaluated regarding user experience benefits and AI performance measures. The KARLI project is approaching two main challenges that are ambitious and have a high potential: First, raising and investigating the potential of AI for driver monitoring and driver-vehicle interaction, and second, accelerating the transfer from research to series production applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ADAC: Autonomes Fahren: Die 5 Stufen zum selbst fahrenden Auto. https://www.adac.de/rund-ums-fahrzeug/ausstattung-technik-zubehoer/autonomes-fahren/grundlagen/autonomes-fahren-5-stufen/(2021). Accessed 20 Feb 2022
BASt: Selbstfahrende Autos – assistiert, automatisiert oder autonom? Nr.: 06/2021. https://www.bast.de/DE/Presse/Mitteilungen/2021/06-2021.html (2021). Accessed 20 Feb 2022
BMJ: Straßenverkehrsgesetz (StVG). https://www.gesetze-im-internet.de/stvg/BJNR004370909.html#BJNR004370909BJNG000101308(2021). Accessed 20 Feb 2022
Diederichs, F., et al.: Adaptive transitions for automation in cars, trucks, buses and motorcycles. IET Intel. Transport Syst. 14(8), 889–899 (2020)
DIN 92419:2020-01: Principles of the ergonomic design of assistive systems (2020)
Edge Case Research: A User’s Guide to Vehicle Automation Modes. https://edgecaseresearch.medium.com/a-users-guide-to-vehicle-automation-modes-4bdd49b30dc0 (2021). Accessed 11 May 2022
Euro NCAP: Euro NCAP’s First Step to Assess Automated Driving Systems. Paper Number 19-0292. https://cdn.euroncap.com/media/53191/euro-ncap-s-first-step-to-assess-automated-driving-systems.pdf (2021). Accessed 20 Feb 2022
Feigh, K.M., Dorneich, M.C., Hayes, C.C.: Toward a characterization of adaptive systems: a framework for researchers and system designers. Hum. Factors 54(6), 1008–1024 (2012)
Gasser, T.M., et al.: Bericht zum Forschungsbedarf. Runder Tisch Automatisiertes Fahren – AG Forschung. https://www.bmvi.de/SharedDocs/DE/Anlage/DG/Digitales/bericht-zum-forschungsbedarf-runder-tisch-automatisiertes-fahren.pdf?__blob=publicationFile(2021). Accessed 20 Feb 2022
Graefe, J., Engelhardt, D., Bengler, K.: What does well-designed adaptivity mean for drivers? A research approach to develop recommendations for adaptive in-vehicle user interfaces that are understandable, transparent and controllable. In: 13th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 43–46 (2021)
KARLI Homepage, www.karli-projekt.de(2021). Accessed 20 Feb 2022
Lingelbach, K., Bui, M., Diederichs, F., Vukelić, M.: Exploring conventional, automated and deep machine learning for electrodermal activity-based drivers’ stress recognition. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1339–1344. IEEE (2021)
Manstetten, D., Marberger, C., Beruscha, F.: Wizard-of-oz experiments in real traffic – can they restart human factors? In: Bruder, R., Winner, H. (eds.) Hands off, Human Factors off? Welche Rolle spielen Human Factors in der Fahrzeugautomation? 9. Darmstädter Kolloquium 2019, pp. 21–31. TU Darmstadt (2019)
Merat, N., et al.: The “Out-of-the-Loop” concept in automated driving: proposed definition, measures and implications. Cogn. Technol. Work 21(1), 87–98 (2018). https://doi.org/10.1007/s10111-018-0525-8
Nogueira, R.F., Bulian, J., Ciaramita, M.: Multi-agent query reformulation: Challenges and the role of diversity. In: DeepRLStructPred at ICLR 16 Mar 2019 (2019)
Pape, A.-A., et al.: Empathic assistants – Methods and use cases in automated and non-automated driving. In: Conference Paper 20th Stuttgart International Symposium (2020)
Rittger, L., Engelhardt, D., Stauch, O., Muth, I.: Adaptive user experience und empathische HMI-Konzepte. ATZ - Automobiltechnische Zeitschrift 122(11), 16–21 (2020)
SAE International: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Technical Report J3016_202104. SAE International (2021)
Schmidt, E.A., Kuiper, O.X., Wolter, S., Diels, C., Bos, J.E.: An international survey on the incidence and modulating factors of carsickness. Transport. Res. F: Traffic Psychol. Behav. 71, 76–87 (2020)
Sini, J., Marceddu, A.C., Violante, M., Dessì, R.: Passengers’ emotions recognition to improve social acceptance of autonomous driving vehicles. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Progresses in Artificial Intelligence and Neural Systems. SIST, vol. 184, pp. 25–32. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5093-5_3
Wright, A.P., et al.: A Comparative Analysis of Industry Human-AI Interaction Guidelines (2020). arXiv preprint arXiv:2010.11761
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Diederichs, F. et al. (2022). Artificial Intelligence for Adaptive, Responsive, and Level-Compliant Interaction in the Vehicle of the Future (KARLI). In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2022 Posters. HCII 2022. Communications in Computer and Information Science, vol 1583. Springer, Cham. https://doi.org/10.1007/978-3-031-06394-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-06394-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06393-0
Online ISBN: 978-3-031-06394-7
eBook Packages: Computer ScienceComputer Science (R0)