Skip to main content

Top-k Dominating Queries on Incremental Datasets

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2022 International Workshops (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13248))

Included in the following conference series:

  • 1194 Accesses

Abstract

Top-k dominance (TKD) query for incomplete datasets is a popular preference query for incomplete data, which analyzes the dominance relationships among objects in a dataset by a dominance method to reveal the top-k most valuable information in the dataset. At present, in-depth research has been conducted on this topic, and efficient query algorithms based on various pruning strategies have been proposed, as well as optimization algorithms based on a distributed computing framework for processing large-scale datasets. With the advent of the information age, data update iterations are accelerated, and in the face of dynamically updated data, the traditional TKD query algorithm based on static data can no longer meet our needs, and an efficient algorithm based on the dynamically updated data set environment is needed. In this paper, we conduct an in-depth study on the TKD query problem for dynamically updated incomplete datasets, and propose a dynamic update parallel algorithm based on MapReduce framework. The algorithm utilizes the query results of historical datasets, avoids the repeated analysis of the dominant relationships between historical objects, optimizes the computation process, reduces the space occupation, and proves through experiments that the dynamic update algorithm has more obvious advantages compared with the traditional algorithm.

Supported by Shandong Provincial Natural Science Foundation (ZR201911150391).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 89.66
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amagata, D., Sasaki, Y., Hara, T., Nishio, S.: Efficient processing of top-k dominating queries in distributed environments. World Wide Web 19(4), 545–577 (2015). https://doi.org/10.1007/s11280-015-0340-6

    Article  Google Scholar 

  2. Antova, L., Koch, C., Olteanu, D.: From complete to incomplete information and back. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 713–724 (2007)

    Google Scholar 

  3. Canahuate, G., Gibas, M., Ferhatosmanoglu, H.: Indexing incomplete databases. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 884–901. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_52

    Chapter  Google Scholar 

  4. Cheung, D.W., Han, D.-W., Ng, V.T., Wong, C.Y.: Maintenance of discovered association rules in large databases: an incremental updating technique. In: Proceedings of the Twelfth International Conference on Data Engineering, pp. 106–114. IEEE (1996)

    Google Scholar 

  5. Cheung, D.W., Lee, S.D., Kao, B.: A general incremental technique for maintaining discovered association rules. In: Database Systems For Advanced Applications 1997, pp. 185–194. World Scientific (1997)

    Google Scholar 

  6. Ezatpoor, P., Zhan, J., Wu, J.M.-T., Chiu, C.: Finding top-\( k \) dominance on incomplete big data using mapreduce framework. IEEE Access 6, 7872–7887 (2018)

    Article  Google Scholar 

  7. Gao, Y., Miao, X., Cui, H., Chen, G., Li, Q.: Processing k-skyband, constrained skyline, and group-by skyline queries on incomplete data. Expert Syst. App. 41(10), 4959–4974 (2014)

    Article  Google Scholar 

  8. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information. In: Grust, T., et al. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 278–296. Springer, Heidelberg (2006). https://doi.org/10.1007/11896548_24

    Chapter  Google Scholar 

  9. Haghani, P., Michel, S., Aberer, K.: Evaluating top-k queries over incomplete data streams. In: Proceedings of the 18th ACM conference on Information and Knowledge Management, pp. 877–886 (2009)

    Google Scholar 

  10. Hong, T.-P., Wang, C.-Y., Tao, Y.-H.: A new incremental data mining algorithm using pre-large itemsets. Intell. Data Anal. 5(2), 111–129 (2001)

    Article  Google Scholar 

  11. Imieliński, T., Jr, W.L.: Incomplete information in relational databases. In Readings in Artificial Intelligence and Databases, pp. 342–360. Elsevier (1989)

    Google Scholar 

  12. Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incomplete data. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 556–565. IEEE (2008)

    Google Scholar 

  13. Lee, C.-H., Lin, C.-R., Chen, M.-S.: Sliding-window filtering: an efficient algorithm for incremental mining. In: Proceedings of the Tenth International Conference on Information and Knowledge Management, pp. 263–270 (2001)

    Google Scholar 

  14. Lin, M.-Y., Lee, S.-Y.: Incremental update on sequential patterns in large databases. In: Proceedings of Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No. 98CH36294), pp. 24–31. IEEE (1998)

    Google Scholar 

  15. Lofi, C., Maarry, K.E., Balke, W.T.: Skyline queries in crowd-enabled databases. In: Proceedings of the 16th International Conference on Extending Database Technology, pp. 465–476 (2013)

    Google Scholar 

  16. Miao, X., Gao, Y., Zheng, B., Chen, G., Cui, H.: Top-k dominating queries on incomplete data. IEEE Trans. Knowl. Data Eng. 28(1), 252–266 (2015)

    Article  Google Scholar 

  17. Ooi, B.C., Goh, C.H., Tan, K.L.: Fast high-dimensional data search in incomplete databases. In: VLDB, pp. 357–367 (1998)

    Google Scholar 

  18. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. (TODS) 30(1), 41–82 (2005)

    Article  Google Scholar 

  19. Parthasarathy, S., Zaki, M.J., Ogihara, M., Dwarkadas, S.: Incremental and interactive sequence mining. In: Proceedings of the Eighth International Conference on Information and Knowledge Management, pp. 251–258 (1999)

    Google Scholar 

  20. Pudi, V., Haritsa, J.R.: Quantifying the utility of the past in mining large databases. Inf. Syst. 25(5), 323–343 (2000)

    Article  Google Scholar 

  21. Saleti, S., Subramanyam, R.: A mapreduce solution for incremental mining of sequential patterns from big data. Expert Syst. App. 133, 109–125 (2019)

    Article  Google Scholar 

  22. Soliman, M.A., Ilyas, I.F., Ben-David, S.: Supporting ranking queries on uncertain and incomplete data. VLDB J. 19(4), 477–501 (2010)

    Article  Google Scholar 

  23. Tiakas, E., Papadopoulos, A.N., Manolopoulos, Y.: Progressive processing of subspace dominating queries. VLDB J. 20(6), 921–948 (2011)

    Article  Google Scholar 

  24. Wang, K.: Discovering patterns from large and dynamic sequential data. J. Intell. Inf. Syst. 9(1), 33–56 (1997)

    Article  Google Scholar 

  25. Wu, J.M.-T., Teng, Q., Lin, J.C.-W., Cheng, C.-F.: Incrementally updating the discovered high average-utility patterns with the pre-large concept. IEEE Access 8, 66788–66798 (2020)

    Article  Google Scholar 

  26. Wu, J.M.-T., Wei, M., Wu, M.-E., Tayeb, S.: Top-k dominating queries on incomplete large dataset. J. Supercomput. 78, 1–22 (2021)

    Google Scholar 

  27. Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-dimensional data. VLDB 7, 483–494 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Ming-Tai Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J.MT., Wang, K., Lin, J.CW. (2022). Top-k Dominating Queries on Incremental Datasets. In: Rage, U.K., Goyal, V., Reddy, P.K. (eds) Database Systems for Advanced Applications. DASFAA 2022 International Workshops. DASFAA 2022. Lecture Notes in Computer Science, vol 13248. Springer, Cham. https://doi.org/10.1007/978-3-031-11217-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11217-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11216-4

  • Online ISBN: 978-3-031-11217-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics