Abstract
Multi-adjoint lattice logic (MLL) has been introduced as an axiomatization of multi-adjoint algebras on lattices. This paper highlights the interest of MLL introducing new relevant properties and some interesting examples of how to reasoning with this logic.
Partially supported by the 2014–2020 ERDF Operational Programme in collaboration with the State Research Agency (AEI) in project PID2019-108991GB-I00, and with the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia in project FEDER-UCA18-108612, and by the European Cooperation in Science & Technology (COST) Action CA17124.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Notice that the main differences between both formulas are given because the conjunctor in BL is commutative.
References
Cintula, P.: Weakly implicative (fuzzy) logics I: basic properties. Arch. Math. Logic 45, 673–704 (2006)
Cintula, P., Noguera, C.: A general framework for mathematical fuzzy logic. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Studies in Logic. Mathematical Logic and Foundations, vol. 37 of Handbook of Mathematical Fuzzy Logic, vol. 1, chapter II, pp. 103–207. College Publications, London (2011)
Cornejo, M.E., Fariñas del Cerro, L., Medina, J.: Multi-adjoint lattice logic and truth-stressing hedges. Fuzzy Sets Syst. 445, 43–65 (2022)
Cornejo, M.E., Fariñas del Cerro, L., Medina, J.: Basic logic versus multi-adjoint logic. In: 13th European Symposium on Computational Intelligence and Mathematics (ESCIM 2021) (2021)
Cornejo, M.E., Fariñas del Cerro, L., Medina, J.: A logical characterization of multi-adjoint algebras. Fuzzy Sets Syst. 425, 140–156 (2021)
Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Multi-adjoint algebras versus non-commutative residuated structures. Int. J. Approximate Reasoning 66, 119–138 (2015)
Cornejo, M.E., Medina, J., Ramírez-Poussa, E., Rubio-Manzano, C.: Multi-adjoint concept lattices, preferences and Bousi Prolog. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 331–341. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47160-0_30
Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Algebraic structure and characterization of adjoint triples. Fuzzy Sets Syst. 425, 117–139 (2021). Mathematics
Cornelis, C., Medina, J., Verbiest, N.: Multi-adjoint fuzzy rough sets: definition, properties and attribute selection. Int. J. Approximate Reasoning 55, 412–426 (2014)
Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44652-4_66
Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)
Dekhtyar, M., Dekhtyar, A., Subrahmanian, V.: Hybrid probabilistic programs: algorithms and complexity. In: Proceedings of 1999 Conference on Uncertainty in AI (1999)
Díaz-Moreno, J.C., Medina, J.: Multi-adjoint relation equations: definition, properties and solutions using concept lattices. Inf. Sci. 253, 100–109 (2013)
Epstein, G., Horn, A.: Logics which are characterized by subresiduated lattices. Math. Log. Q. 22(1), 199–210 (1976)
Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124, 271–288 (2001)
Godo, L., Sócola-Ramos, M., Esteva, F.: On the logic of left-continuous t-norms and right-continuous t-conorms. Commun. Comput. Inf. Sci. 1239, 654–665 (2020)
Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer Academic (1998)
Julián-Iranzo, P., Medina, J., Ojeda-Aciego, M.: On reductants in the framework of multi-adjoint logic programming. Fuzzy Sets Syst. 317, 27–43 (2017)
Julián, P., Moreno, G., Penabad, J.: On fuzzy unfolding: a multi-adjoint approach. Fuzzy Sets Syst. 154(1), 16–33 (2005)
Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. J. Log. Program. 12, 335–367 (1992)
Lakshmanan, L.V.S., Sadri, F.: On a theory of probabilistic deductive databases. Theory Pract. Logic Program. 1(1), 5–42 (2001)
Medina, J.: Retículos Multi-adjuntos y teoremas de continuidad para el operador de consecuencias. Ph.D. thesis, Universidad de Málaga (2001)
Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices. Inf. Sci. 190, 95–106 (2012)
Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)
Medina, J., Ojeda-Aciego, M., Valverde, A., Vojtáš, P.: Towards biresiduated multi-adjoint logic programming. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA -2003. LNCS (LNAI), vol. 3040, pp. 608–617. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25945-9_60
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A multi-adjoint logic approach to abductive reasoning. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 269–283. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45635-X_26
Medina, J., Ojeda-Aciego, M., Vojtaš, P.: Multi-adjoint logic programming with continous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 351–364. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45402-0_26
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint logic programming. In: Brazdil, P., Jorge, A. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 290–297. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45329-6_29
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)
Mendelson, E.: Introduction to Mathematical Logic, 6th edn. Chapman & Hall/CRC, London (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cornejo, M.E., Fariñas del Cerro, L., Medina, J. (2022). Multi-adjoint Lattice Logic. Properties and Query Answering. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_57
Download citation
DOI: https://doi.org/10.1007/978-3-031-16474-3_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16473-6
Online ISBN: 978-3-031-16474-3
eBook Packages: Computer ScienceComputer Science (R0)