Skip to main content

Task Assignment with Spatio-temporal Recommendation in Spatial Crowdsourcing

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13421))

  • 1187 Accesses

Abstract

With the development of GPS-enabled smart devices and wireless networks, spatial crowdsourcing has received wide attention in assigning location-sensitive tasks to moving workers. In real-world scenarios, workers may show different preferences in different spatio-temporal contexts for the assigned tasks. It is a challenge to meet the spatio-temporal preferences of workers when assigning tasks. To this end, we propose a novel spatio-temporal preference-aware task assignment framework which consists of a translation-based recommendation phase and a task assignment phase. Specifically, in the first phase, we use a translation-based recommendation model to learn spatio-temporal effects from the workers’ historical task-performing activities and then calculate the spatio-temporal preference scores of workers. In the task assignment phase, we design a basic greedy algorithm and a Kuhn-Munkras (KM)-based algorithm which could achieve a better balance to maximize the total rewards and meet the spatio-temporal preferences of workers. Finally, extensive experiments are conducted, verifying the effectiveness and practicality of the proposed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 94.94
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, P., Lian, X., Chen, L., Shahabi, C.: Prediction-based task assignment in spatial crowdsourcing. In: ICDE, pp. 997–1008 (2017)

    Google Scholar 

  2. Cheng, P., Lian, X., Chen, Z., Fu, R., Chen, L., Han, J., Zhao, J.: Reliable diversity-based spatial crowdsourcing by moving workers. PVLDB 8(10), 1022–1033 (2015)

    Google Scholar 

  3. Cheng, P., Lian, X., Jian, X., Chen, L.: Frog: a fast and reliable crowdsourcing framework. TKDE 31(5), 894–908 (2018)

    Google Scholar 

  4. Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker’s self-selected tasks in spatial crowdsourcing. In: SIGSPATIAL, pp. 324–333 (2013)

    Google Scholar 

  5. Dickerson, J.P., Sankararaman, K.A., Srinivasan, A., Xu, P.: Assigning tasks to workers based on historical data: Online task assignment with two-sided arrivals. In: AAMAS, pp. 318–326 (2018)

    Google Scholar 

  6. Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowdsourcing. In: SIGSPATIAL, pp. 189–198 (2012)

    Google Scholar 

  7. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, X., Zhao, Y., Guo, J., Zheng, K.: Group Task Assignment with Social Impact-Based Preference in Spatial Crowdsourcing. In: Nah, Y., Cui, B., Lee, S.-W., Yu, J.X., Moon, Y.-S., Whang, S.E. (eds.) DASFAA 2020. LNCS, vol. 12113, pp. 677–693. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59416-9_44

    Chapter  Google Scholar 

  9. Li, Y., Zhao, Y., Zheng, K.: Preference-aware group task assignment in spatial crowdsourcing: a mutual information-based approach. In: ICDM, pp. 350–359 (2021)

    Google Scholar 

  10. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  11. Qian, T., Liu, B., Nguyen, Q.V.H., Yin, H.: Spatiotemporal representation learning for translation-based poi recommendation. TOIS 37(2), 1–24 (2019)

    Article  Google Scholar 

  12. Tong, Y., Chen, L., Zhou, Z., Jagadish, H.V., Shou, L., Lv, W.: Slade: a smart large-scale task decomposer in crowdsourcing. TKDE 30(8), 1588–1601 (2018)

    Google Scholar 

  13. Wang, X., Salim, F.D., Ren, Y., Koniusz, P.: Relation Embedding for Personalised Translation-Based POI Recommendation. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12084, pp. 53–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47426-3_5

    Chapter  Google Scholar 

  14. Wang, Z., Zhao, Y., Chen, X., Zheng, K.: Task assignment with worker churn prediction in spatial crowdsourcing. In: CIKM, pp. 2070–2079 (2021)

    Google Scholar 

  15. Xia, J., Zhao, Y., Liu, G., Xu, J., Zhang, M., Zheng, K.: Profit-driven task assignment in spatial crowdsourcing. In: IJCAI, pp. 1914–1920 (2019)

    Google Scholar 

  16. Xu, L., Zhou, X.: A crowd-powered task generation method for study of struggling search. Data Sci. Eng. 6(4), 472–484 (2021)

    Article  Google Scholar 

  17. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNS. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 129–142 (2015)

    Article  Google Scholar 

  18. Ye, G., Zhao, Y., Chen, X., Zheng, K.: Task allocation with geographic partition in spatial crowdsourcing. In: CIKM, pp. 2404–2413 (2021)

    Google Scholar 

  19. Zhao, Y., Guo, J., Chen, X., Hao, J., Zhou, X., Zheng, K.: Coalition-based task assignment in spatial crowdsourcing. In: ICDE, pp. 241–252 (2021)

    Google Scholar 

  20. Zhao, Y., Li, Y., Wang, Y., Su, H., Zheng, K.: Destination-aware task assignment in spatial crowdsourcing. In: CIKM, pp. 297–306 (2017)

    Google Scholar 

  21. Zhao, Y., et al.: Preference-aware task assignment in spatial crowdsourcing. In: AAAI, pp. 2629–2636 (2019)

    Google Scholar 

  22. Zhao, Y., Zheng, K., Cui, Y., Su, H., Zhu, F., Zhou, X.: Predictive task assignment in spatial crowdsourcing: a data-driven approach. In: ICDE, pp. 13–24 (2020)

    Google Scholar 

  23. Zhao, Y., Zheng, K., Guo, J., Yang, B., Pedersen, T.B., Jensen, C.S.: Fairness-aware task assignment in spatial crowdsourcing: Game-theoretic approaches. In: ICDE, pp. 265–276 (2021)

    Google Scholar 

  24. Zhao, Y., Zheng, K., Li, Y., Su, H., Liu, J., Zhou, X.: Destination-aware task assignment in spatial crowdsourcing: a worker decomposition approach. TKDE, pp. 2336–2350 (2019)

    Google Scholar 

  25. Zhao, Y., Zheng, K., Yin, H., Liu, G., Fang, J., Zhou, X.: Preference-aware task assignment in spatial crowdsourcing: from individuals to groups. TKDE 34(7), 3461–3477 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSFC (No. 61972069, 61836007 and 61832017), and Shenzhen Municipal Science and Technology R &D Funding Basic Research Program (JCYJ20210324133607021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, C., Cui, Y., Zhao, Y., Zheng, K. (2023). Task Assignment with Spatio-temporal Recommendation in Spatial Crowdsourcing. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13421. Springer, Cham. https://doi.org/10.1007/978-3-031-25158-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25158-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25157-3

  • Online ISBN: 978-3-031-25158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics