Skip to main content

DHG-GAN: Diverse Image Outpainting via Decoupled High Frequency Semantics

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Abstract

Diverse image outpainting aims to restore large missing regions surrounding a known region while generating multiple plausible results. Although existing outpainting methods have demonstrated promising quality of image reconstruction, they are ineffective for providing both diverse and realistic content. This paper proposes a Decoupled High-frequency semantic Guidance-based GAN (DHG-GAN) for diverse image outpainting with the following contributions. 1) We propose a two-stage method, in which the first stage generates high-frequency semantic images for guidance of structural and textural information in the outpainting region and the second stage is a semantic completion network for completing the image outpainting based on this semantic guidance. 2) We design spatially varying stylemaps to enable targeted editing of high-frequency semantics in the outpainting region to generate diverse and realistic results. We evaluate the photorealism and quality of the diverse results generated by our model on CelebA-HQ, Place2 and Oxford Flower102 datasets. The experimental results demonstrate large improvement over state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alharbi, Y., Wonka, P.: Disentangled image generation through structured noise injection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5134–5142 (2020)

    Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  3. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference, pp. 1–12 (2014)

    Google Scholar 

  4. Cheng, Y.C., Lin, C.H., Lee, H.Y., Ren, J., Tulyakov, S., Yang, M.H.: Inout: diverse image outpainting via GAN inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11431–11440 (2022)

    Google Scholar 

  5. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  6. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Guan, S., Tai, Y., Ni, B., Zhu, F., Huang, F., Yang, X.: Collaborative learning for faster StyleGAN embedding. arXiv preprint arXiv:2007.01758 (2020)

  8. Guo, D., et al.: Spiral generative network for image extrapolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 701–717. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_41

    Chapter  Google Scholar 

  9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  12. Jo, Y., Yang, S., Kim, S.J.: Investigating loss functions for extreme super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 424–425 (2020)

    Google Scholar 

  13. Jo, Y., Park, J.: SC-FEGAN: Face editing generative adversarial network with user’s sketch and color. In: 2019 IEEE/CVF International Conference on Computer Vision, pp. 1745–1753 (2019). https://doi.org/10.1109/ICCV.2019.00183

  14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  15. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  16. Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent in GAN for real-time image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 852–861 (2021)

    Google Scholar 

  17. Kim, K., Yun, Y., Kang, K.W., Kong, K., Lee, S., Kang, S.J.: Painting outside as inside: edge guided image outpainting via bidirectional rearrangement with progressive step learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2122–2130 (2021)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  20. Kopf, J., Kienzle, W., Drucker, S., Kang, S.B.: Quality prediction for image completion. ACM Trans. Graph. (ToG) 31(6), 1–8 (2012)

    Google Scholar 

  21. Lin, C.H., Lee, H.Y., Cheng, Y.C., Tulyakov, S., Yang, M.H.: InfinityGAN: Towards infinite-resolution image synthesis. arXiv preprint arXiv:2104.03963 (2021)

  22. Lin, H., Pagnucco, M., Song, Y.: Edge guided progressively generative image outpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 806–815 (2021)

    Google Scholar 

  23. Liu, H., et al.: Deflocnet: deep image editing via flexible low-level controls. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10765–10774 (2021)

    Google Scholar 

  24. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs created equal? A large-scale study. arXiv preprint arXiv:1711.10337 (2017)

  25. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: EdgeConnect: Generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  26. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 6th Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  27. Peng, J., Liu, D., Xu, S., Li, H.: Generating diverse structure for image inpainting with hierarchical VQ-VAE. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10775–10784 (2021)

    Google Scholar 

  28. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  29. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4491–4500 (2017)

    Google Scholar 

  30. Shan, Q., Curless, B., Furukawa, Y., Hernandez, C., Seitz, S.M.: Photo uncrop. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 16–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_2

    Chapter  Google Scholar 

  31. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9243–9252 (2020)

    Google Scholar 

  32. Sivic, J., Kaneva, B., Torralba, A., Avidan, S., Freeman, W.T.: Creating and exploring a large photorealistic virtual space. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8. IEEE (2008)

    Google Scholar 

  33. Teterwak, P., et al.: Boundless: Generative adversarial networks for image extension. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10521–10530 (2019)

    Google Scholar 

  34. Van Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning, pp. 1747–1756. PMLR (2016)

    Google Scholar 

  35. Wang, M., Lai, Y.K., Liang, Y., Martin, R.R., Hu, S.M.: BiggerPicture: data-driven image extrapolation using graph matching. ACM Trans. Graph. 33(6), 1–14 (2014)

    Article  Google Scholar 

  36. Wang, Y., Wei, Y., Qian, X., Zhu, L., Yang, Y.: Sketch-guided scenery image outpainting. IEEE Trans. Image Process. 30, 2643–2655 (2021)

    Article  Google Scholar 

  37. Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1399–1408 (2019)

    Google Scholar 

  38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  39. Xia, X., Xu, C., Nan, B.: Inception-V3 for flower classification. In: 2nd International Conference on Image, Vision and Computing, pp. 783–787 (2017)

    Google Scholar 

  40. Xiong, W.,et al.: Foreground-aware image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5840–5848 (2019)

    Google Scholar 

  41. Yang, C.A., Tan, C.Y., Fan, W.C., Yang, C.F., Wu, M.L., Wang, Y.C.F.: Scene graph expansion for semantics-guided image outpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15617–15626 (2022)

    Google Scholar 

  42. Yang, Z., Dong, J., Liu, P., Yang, Y., Yan, S.: Very long natural scenery image prediction by outpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10561–10570 (2019)

    Google Scholar 

  43. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  44. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4471–4480 (2019)

    Google Scholar 

  45. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  46. Zhang, Y., Xiao, J., Hays, J., Tan, P.: FrameBreak: dramatic image extrapolation by guided shift-maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1171–1178 (2013)

    Google Scholar 

  47. Zhao, L., et al.: UCTGAN: diverse image inpainting based on unsupervised cross-space translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5741–5750 (2020)

    Google Scholar 

  48. Zheng, C., Cham, T.J., Cai, J.: Pluralistic image completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1438–1447 (2019)

    Google Scholar 

  49. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  50. Zhu, J.Y., et al.: Multimodal image-to-image translation by enforcing bi-cycle consistency. In: Advances in Neural Information Processing Systems, pp. 465–476 (2017)

    Google Scholar 

  51. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Song .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 670 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Pagnucco, M., Song, Y. (2023). DHG-GAN: Diverse Image Outpainting via Decoupled High Frequency Semantics. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13847. Springer, Cham. https://doi.org/10.1007/978-3-031-26293-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26293-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26292-0

  • Online ISBN: 978-3-031-26293-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics