Abstract
Changes in customer demands and technological advances increase the complexity of production scheduling. Hence, current production scheduling algorithms are not sufficiently good. Additionally, advances in the research of Machine Learning algorithms drive the development of new scheduling algorithms. Each algorithm’s quality is problem-dependent, making it challenging to find the best algorithm for a given production scenario. Benchmark problems only provide guidance as they do not reflect real-world situations. To address this issue, in this article, we develop the software artifact Simfia that allows researchers and practitioners to evaluate production scheduling algorithms in highly customizable experiments. To create the solution, we follow a design science research approach. We identify 30 functional requirements, develop the solution prototypically and demonstrate it in an exemplary production scenario. The artifact is developed in a service-oriented architecture where scheduling algorithms are provided as individually deployable scheduling services that Simfia manages. This solution enables researchers and practitioners to experiment with production scheduling algorithms in highly configurable production scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Da Silveira, G., Borenstein, D., Fogliatto, F.S.: Mass customization: literature review and research directions. Int. J. Prod. Econ. 72, 1–13 (2001). https://doi.org/10.1016/S0925-5273(00)00079-7
Yang, W., Takakuwa, S.: Simulation-based dynamic shop floor scheduling for a flexible manufacturing system in the industry 4.0 environment. In: Chan, W.K.V. (ed) Winter Simulation Conference, pp. 3908–3916. IEEE (2017)
Schuh, G., Potente, T., Thomas, C., et al.: Web-based value stream oriented simulation of production control. In: Laroque, C. (ed) 2012 Winter Simulation Conference, pp. 1–10. IEEE (2012)
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industrie 4.0. Wirtschafts Informatik 56(4), 261–264 (2014). https://doi.org/10.1007/s11576-014-0424-4
Baumol, W.J.: Economic theory and operations analysis. South. Econ. J. 28, 305 (1962). https://doi.org/10.2307/1055453
Zhang, H., Jiang, Z., Guo, C.: Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology. Int. J. Adv. Manuf. Technol. 41, 110–121 (2009). https://doi.org/10.1007/s00170-008-1462-0
Wang, Z., Wu, Q., Qiao, F.: A lot dispatching strategy integrating WIP management and wafer start control. IEEE Trans. Automat. Sci. Eng. 4, 579–583 (2007). https://doi.org/10.1109/TASE.2007.905991
Fazel Zarandi, M.H., Sadat Asl, A.A., Sotudian, S., Castillo, O.: A state of the art review of intelligent scheduling. Artif. Intell. Rev. 53(1), 501–593 (2018). https://doi.org/10.1007/s10462-018-9667-6
Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993). https://doi.org/10.1016/0377-2217(93)90182-M
Li, W., Han, D., Gao, L., et al.: Integrated production and transportation scheduling method in hybrid flow shop. Chin. J. Mech. Eng. 35, 1–20 (2022). https://doi.org/10.1186/s10033-022-00683-7
Banks, J.: Output analysis capabilities of simulation software. SIMULATION 66, 23–30 (1996). https://doi.org/10.1177/003754979606600103
Pinedo, M.L.: Scheduling Theory, Algorithms, and Systems. Springer International Publishing, Cham (2016).https://doi.org/10.1007/978-3-319-26580-3
Toader, F.A.: Production scheduling in flexible manufacturing systems: a state of the art survey. J. Electr. Eng. Electron. Control Comput. Sci. 3, 1–6 (2017)
Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San Francisco (1979)
Nguyen, S., Zhang, M., Johnston, M., et al.: Learning iterative dispatching rules for job shop scheduling with genetic programming. Int. J. Adv. Manuf. Technol. 67, 85–100 (2013). https://doi.org/10.1007/s00170-013-4756-9
Blackstone, J.H., Phillips, D.T., Hogg, G.L.: A state-of-the-art survey of dispatching rules for manufacturing job shop operations. Int. J. Prod. Res. 20, 27–45 (1982). https://doi.org/10.1080/00207548208947745
Freier, P., Schumann, M.: Design and implementation of a decision support system for production scheduling in the context of cyber-physical systems. In: Gronau, N., Heine, M., Poustcchi, K. et al. (eds) WI2020 Zentrale Tracks pp. 757–773. GITO Verlag, (2020)
Rolf, B., Reggelin, T., Nahhas, A., et al.: Assigning dispatching rules using a genetic algorithm to solve a hybrid flow shop scheduling problem. Procedia Manufact. 42, 442–449 (2020). https://doi.org/10.1016/j.promfg.2020.02.051
Zhang, L., Wang, L., Tang, F.: Order-based genetic algorithm for flow shop scheduling. In: Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 139–144. IEEE (2002)
Tamaki, H., Ochi, M., Araki, M.: Genetics-based machine learning approach to production scheduling-a case of in-tree type precedence relation. In: Proceedings of the IEEE International Symposium on Industrial Electronics ISIE 1998 (Cat. No.98TH8357), pp. 714–719. IEEE (1998)
Nie, L., Gao, L., Li, P., et al.: Application of gene expression programming on dynamic job shop scheduling problem. In: Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 291–295. IEEE (2011)
Wei, H., Li, S., Quan, H., et al.: Unified multi-objective genetic algorithm for energy efficient job shop scheduling. IEEE Access 9, 54542–54557 (2021). https://doi.org/10.1109/ACCESS.2021.3070981
Yan, J., Liu, Z., Zhang, T., et al.: Autonomous decision-making method of transportation process for flexible job shop scheduling problem based on reinforcement learning. In: International Conference on Machine Learning and Intelligent Systems Engineering, pp. 234–238. IEEE (2021)
Zhang, R., Song, S., Wu, C.: Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm. IEEE Trans. Ind. Inf. 16, 2809–2819 (2020). https://doi.org/10.1109/TII.2019.2944247
Zhao, F., Zhang, Q., Yang, Y.: An improved particle swarm optimization (PSO) algorithm and fuzzy inference systems based approach to process planning and production scheduling integration in holonic manufacturing system (HMS). In: 2006 International Conference on Machine Learning and Cybernetics, pp. 396–401. IEEE (2006)
Liu, M., Dong, M.-Y., Wu, C.: An objective decomposing method based on IBMDC for solving complex production scheduling problem. In: Proceedings. International Conference on Machine Learning and Cybernetics, pp. 1676–1679. IEEE (2002)
Elsayed, A.K., Elsayed, E.K., Eldahshan, K.A.: Deep reinforcement learning based actor-critic framework for decision-making actions in production scheduling. In: 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 32–40. IEEE (2021)
Qu, S., Wang, J., Shivani, G.: Learning adaptive dispatching rules for a manufacturing process system by using reinforcement learning approach. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2016)
Waschneck, B., Reichstaller, A., Belzner, L., et al.: Deep reinforcement learning for semiconductor production scheduling. In: 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp. 301–306. IEEE (2018)
Park, I.-B., Huh, J., Kim, J., et al.: A reinforcement learning approach to robust scheduling of semiconductor manufacturing facilities. IEEE Trans. Automat. Sci. Eng. 17, 1420–1431 (2019). https://doi.org/10.1109/TASE.2019.2956762
Jeffrey, P., Seaton, R.: The use of operational research tools: a survey of operational research practitioners in the UK. J. Oper. Res. Soc. 46, 797–808 (1995). https://doi.org/10.1057/jors.1995.113
Fishman, G.S.: Discrete-Event Simulation. Springer New York, New York, NY (2001)
Plant Simulation: Plant Simulation (2023). https://plant-simulation.de/. Accessed 06 Jan 2023
anylogic: anylogic - Material Handling Library (2023). https://www.anylogic.de/features/libraries/material-handling-library/. Accessed 06 Jan 2023
SimPy: SimPy - Discrete event simulation for Python (2023). https://simpy.readthedocs.io/en/latest/. Accessed 06 Jan 2023
ManPy: ManPy - Discrete event simulation in python (2023). https://www.manpy-simulation.org/. Accessed 06 Jan 2023
Neal DeBuhr: SimRS (2022). https://simrs.com/. Accessed 06 Jan 2023
Peffers, K., Tuunanen, T., Rothenberger, M.A., et al.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302
vom Brocke, J., Simons, A., Niehaves, B., et al.: Reconstructing the giant: On the importance of rigour in documenting the literature search process. In: Proceedings of the ECIS 2009 (2009)
Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly 26:xiii–xxiii (2002)
Lang, S., Reggelin, T., Jobran, M., et al.: Towards a modular, decentralized and digital industry 4.0 learning factory. In: 2018 Sixth International Conference on Enterprise Systems (ES), pp. 123–128. IEEE (2018)
Sommerville, I.: Integrated requirements engineering: a tutorial. IEEE Softw. 22, 16–23 (2005). https://doi.org/10.1109/MS.2005.13
Kamaruddin, S., Khan, Z.A., Noor Siddiquee, A., et al.: The impact of variety of orders and different number of workers on production scheduling performance. J. Manuf. Technol. Manag. 24, 1123–1142 (2013). https://doi.org/10.1108/JMTM-12-2010-0083
OASIS: Reference Model for Service Oriented Architecture (2006). https://www.oasis-open.org/committees/download.php/16587/wd-soa-rm-cd1ED.pdf
Django Software Foundation: Why Django? – Overview (2021). https://www.djangoproject.com/start/overview/. Accessed 21 Oct 2021
Docker Inc.: Docker Engine overview (2022). https://docs.docker.com/engine/. Accessed 13 Jun 2022
Boettiger, C.: An introduction to Docker for reproducible research. ACM SIGOPS Operating Syst. Rev. 49, 71–79 (2015)
Docker Inc.: Docker Engine API (v1.41) (2021). https://docs.docker.com/engine/api/v1.41/. Accessed 10 Oct 2021
OpenAPI Initative: OpenAPI Specification - Version 3.1.0 (2021). https://spec.openapis.org/oas/v3.1.0. Accessed 15 Feb 2021
Ierusalimschy, R.: Programming in Lua, 3rd edn. Lua.org, Rio de Janeiro (2013)
Jordan, L., Greyling, P.: Embedding lua in android applications. In: Jordan, L., Greyling, P. (eds.) Practical Android Projects, pp. 155–192. Apress, Berkeley, CA (2011)
Tanimura, A., Iwasaki, H.: Integrating lua into C for embedding lua interpreters in a C application. In: Ossowski, S. (ed) Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 1936–1943. ACM, New York, NY, USA (2016)
GitLab Inc.: GitLab Container Registry (2022). https://docs.gitlab.com/ee/user/packages/container_registry. Accessed 13 Jun 2022
Mashkoor, A., Fernandes, J.M.: Deriving software architectures for CRUD applications: the FPL tower interface case study. In: International Conference on Software Engineering Advances (ICSEA 2007), p. 25. IEEE (2007)
Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Groth, M., Dippel, A., Schumann, M. (2023). Enabling the Evaluation of Production Scheduling Algorithms in Complex Production Environments Using Individually Deployable Scheduling Services. In: Gerber, A., Baskerville, R. (eds) Design Science Research for a New Society: Society 5.0. DESRIST 2023. Lecture Notes in Computer Science, vol 13873. Springer, Cham. https://doi.org/10.1007/978-3-031-32808-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-32808-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32807-7
Online ISBN: 978-3-031-32808-4
eBook Packages: Computer ScienceComputer Science (R0)