Skip to main content

Enabling the Evaluation of Production Scheduling Algorithms in Complex Production Environments Using Individually Deployable Scheduling Services

  • Conference paper
  • First Online:
Design Science Research for a New Society: Society 5.0 (DESRIST 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13873))

  • 1454 Accesses

Abstract

Changes in customer demands and technological advances increase the complexity of production scheduling. Hence, current production scheduling algorithms are not sufficiently good. Additionally, advances in the research of Machine Learning algorithms drive the development of new scheduling algorithms. Each algorithm’s quality is problem-dependent, making it challenging to find the best algorithm for a given production scenario. Benchmark problems only provide guidance as they do not reflect real-world situations. To address this issue, in this article, we develop the software artifact Simfia that allows researchers and practitioners to evaluate production scheduling algorithms in highly customizable experiments. To create the solution, we follow a design science research approach. We identify 30 functional requirements, develop the solution prototypically and demonstrate it in an exemplary production scenario. The artifact is developed in a service-oriented architecture where scheduling algorithms are provided as individually deployable scheduling services that Simfia manages. This solution enables researchers and practitioners to experiment with production scheduling algorithms in highly configurable production scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 84.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Da Silveira, G., Borenstein, D., Fogliatto, F.S.: Mass customization: literature review and research directions. Int. J. Prod. Econ. 72, 1–13 (2001). https://doi.org/10.1016/S0925-5273(00)00079-7

    Article  Google Scholar 

  2. Yang, W., Takakuwa, S.: Simulation-based dynamic shop floor scheduling for a flexible manufacturing system in the industry 4.0 environment. In: Chan, W.K.V. (ed) Winter Simulation Conference, pp. 3908–3916. IEEE (2017)

    Google Scholar 

  3. Schuh, G., Potente, T., Thomas, C., et al.: Web-based value stream oriented simulation of production control. In: Laroque, C. (ed) 2012 Winter Simulation Conference, pp. 1–10. IEEE (2012)

    Google Scholar 

  4. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industrie 4.0. Wirtschafts Informatik 56(4), 261–264 (2014). https://doi.org/10.1007/s11576-014-0424-4

    Article  Google Scholar 

  5. Baumol, W.J.: Economic theory and operations analysis. South. Econ. J. 28, 305 (1962). https://doi.org/10.2307/1055453

    Article  Google Scholar 

  6. Zhang, H., Jiang, Z., Guo, C.: Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology. Int. J. Adv. Manuf. Technol. 41, 110–121 (2009). https://doi.org/10.1007/s00170-008-1462-0

    Article  Google Scholar 

  7. Wang, Z., Wu, Q., Qiao, F.: A lot dispatching strategy integrating WIP management and wafer start control. IEEE Trans. Automat. Sci. Eng. 4, 579–583 (2007). https://doi.org/10.1109/TASE.2007.905991

    Article  Google Scholar 

  8. Fazel Zarandi, M.H., Sadat Asl, A.A., Sotudian, S., Castillo, O.: A state of the art review of intelligent scheduling. Artif. Intell. Rev. 53(1), 501–593 (2018). https://doi.org/10.1007/s10462-018-9667-6

    Article  Google Scholar 

  9. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993). https://doi.org/10.1016/0377-2217(93)90182-M

    Article  MATH  Google Scholar 

  10. Li, W., Han, D., Gao, L., et al.: Integrated production and transportation scheduling method in hybrid flow shop. Chin. J. Mech. Eng. 35, 1–20 (2022). https://doi.org/10.1186/s10033-022-00683-7

    Article  Google Scholar 

  11. Banks, J.: Output analysis capabilities of simulation software. SIMULATION 66, 23–30 (1996). https://doi.org/10.1177/003754979606600103

    Article  Google Scholar 

  12. Pinedo, M.L.: Scheduling Theory, Algorithms, and Systems. Springer International Publishing, Cham (2016).https://doi.org/10.1007/978-3-319-26580-3

  13. Toader, F.A.: Production scheduling in flexible manufacturing systems: a state of the art survey. J. Electr. Eng. Electron. Control Comput. Sci. 3, 1–6 (2017)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  15. Nguyen, S., Zhang, M., Johnston, M., et al.: Learning iterative dispatching rules for job shop scheduling with genetic programming. Int. J. Adv. Manuf. Technol. 67, 85–100 (2013). https://doi.org/10.1007/s00170-013-4756-9

    Article  Google Scholar 

  16. Blackstone, J.H., Phillips, D.T., Hogg, G.L.: A state-of-the-art survey of dispatching rules for manufacturing job shop operations. Int. J. Prod. Res. 20, 27–45 (1982). https://doi.org/10.1080/00207548208947745

    Article  Google Scholar 

  17. Freier, P., Schumann, M.: Design and implementation of a decision support system for production scheduling in the context of cyber-physical systems. In: Gronau, N., Heine, M., Poustcchi, K. et al. (eds) WI2020 Zentrale Tracks pp. 757–773. GITO Verlag, (2020)

    Google Scholar 

  18. Rolf, B., Reggelin, T., Nahhas, A., et al.: Assigning dispatching rules using a genetic algorithm to solve a hybrid flow shop scheduling problem. Procedia Manufact. 42, 442–449 (2020). https://doi.org/10.1016/j.promfg.2020.02.051

    Article  Google Scholar 

  19. Zhang, L., Wang, L., Tang, F.: Order-based genetic algorithm for flow shop scheduling. In: Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 139–144. IEEE (2002)

    Google Scholar 

  20. Tamaki, H., Ochi, M., Araki, M.: Genetics-based machine learning approach to production scheduling-a case of in-tree type precedence relation. In: Proceedings of the IEEE International Symposium on Industrial Electronics ISIE 1998 (Cat. No.98TH8357), pp. 714–719. IEEE (1998)

    Google Scholar 

  21. Nie, L., Gao, L., Li, P., et al.: Application of gene expression programming on dynamic job shop scheduling problem. In: Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 291–295. IEEE (2011)

    Google Scholar 

  22. Wei, H., Li, S., Quan, H., et al.: Unified multi-objective genetic algorithm for energy efficient job shop scheduling. IEEE Access 9, 54542–54557 (2021). https://doi.org/10.1109/ACCESS.2021.3070981

    Article  Google Scholar 

  23. Yan, J., Liu, Z., Zhang, T., et al.: Autonomous decision-making method of transportation process for flexible job shop scheduling problem based on reinforcement learning. In: International Conference on Machine Learning and Intelligent Systems Engineering, pp. 234–238. IEEE (2021)

    Google Scholar 

  24. Zhang, R., Song, S., Wu, C.: Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm. IEEE Trans. Ind. Inf. 16, 2809–2819 (2020). https://doi.org/10.1109/TII.2019.2944247

    Article  Google Scholar 

  25. Zhao, F., Zhang, Q., Yang, Y.: An improved particle swarm optimization (PSO) algorithm and fuzzy inference systems based approach to process planning and production scheduling integration in holonic manufacturing system (HMS). In: 2006 International Conference on Machine Learning and Cybernetics, pp. 396–401. IEEE (2006)

    Google Scholar 

  26. Liu, M., Dong, M.-Y., Wu, C.: An objective decomposing method based on IBMDC for solving complex production scheduling problem. In: Proceedings. International Conference on Machine Learning and Cybernetics, pp. 1676–1679. IEEE (2002)

    Google Scholar 

  27. Elsayed, A.K., Elsayed, E.K., Eldahshan, K.A.: Deep reinforcement learning based actor-critic framework for decision-making actions in production scheduling. In: 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 32–40. IEEE (2021)

    Google Scholar 

  28. Qu, S., Wang, J., Shivani, G.: Learning adaptive dispatching rules for a manufacturing process system by using reinforcement learning approach. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2016)

    Google Scholar 

  29. Waschneck, B., Reichstaller, A., Belzner, L., et al.: Deep reinforcement learning for semiconductor production scheduling. In: 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp. 301–306. IEEE (2018)

    Google Scholar 

  30. Park, I.-B., Huh, J., Kim, J., et al.: A reinforcement learning approach to robust scheduling of semiconductor manufacturing facilities. IEEE Trans. Automat. Sci. Eng. 17, 1420–1431 (2019). https://doi.org/10.1109/TASE.2019.2956762

    Article  Google Scholar 

  31. Jeffrey, P., Seaton, R.: The use of operational research tools: a survey of operational research practitioners in the UK. J. Oper. Res. Soc. 46, 797–808 (1995). https://doi.org/10.1057/jors.1995.113

    Article  Google Scholar 

  32. Fishman, G.S.: Discrete-Event Simulation. Springer New York, New York, NY (2001)

    Book  MATH  Google Scholar 

  33. Plant Simulation: Plant Simulation (2023). https://plant-simulation.de/. Accessed 06 Jan 2023

  34. anylogic: anylogic - Material Handling Library (2023). https://www.anylogic.de/features/libraries/material-handling-library/. Accessed 06 Jan 2023

  35. SimPy: SimPy - Discrete event simulation for Python (2023). https://simpy.readthedocs.io/en/latest/. Accessed 06 Jan 2023

  36. ManPy: ManPy - Discrete event simulation in python (2023). https://www.manpy-simulation.org/. Accessed 06 Jan 2023

  37. Neal DeBuhr: SimRS (2022). https://simrs.com/. Accessed 06 Jan 2023

  38. Peffers, K., Tuunanen, T., Rothenberger, M.A., et al.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302

    Article  Google Scholar 

  39. vom Brocke, J., Simons, A., Niehaves, B., et al.: Reconstructing the giant: On the importance of rigour in documenting the literature search process. In: Proceedings of the ECIS 2009 (2009)

    Google Scholar 

  40. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly 26:xiii–xxiii (2002)

    Google Scholar 

  41. Lang, S., Reggelin, T., Jobran, M., et al.: Towards a modular, decentralized and digital industry 4.0 learning factory. In: 2018 Sixth International Conference on Enterprise Systems (ES), pp. 123–128. IEEE (2018)

    Google Scholar 

  42. Sommerville, I.: Integrated requirements engineering: a tutorial. IEEE Softw. 22, 16–23 (2005). https://doi.org/10.1109/MS.2005.13

    Article  Google Scholar 

  43. Kamaruddin, S., Khan, Z.A., Noor Siddiquee, A., et al.: The impact of variety of orders and different number of workers on production scheduling performance. J. Manuf. Technol. Manag. 24, 1123–1142 (2013). https://doi.org/10.1108/JMTM-12-2010-0083

    Article  Google Scholar 

  44. OASIS: Reference Model for Service Oriented Architecture (2006). https://www.oasis-open.org/committees/download.php/16587/wd-soa-rm-cd1ED.pdf

  45. Django Software Foundation: Why Django? – Overview (2021). https://www.djangoproject.com/start/overview/. Accessed 21 Oct 2021

  46. Docker Inc.: Docker Engine overview (2022). https://docs.docker.com/engine/. Accessed 13 Jun 2022

  47. Boettiger, C.: An introduction to Docker for reproducible research. ACM SIGOPS Operating Syst. Rev. 49, 71–79 (2015)

    Article  Google Scholar 

  48. Docker Inc.: Docker Engine API (v1.41) (2021). https://docs.docker.com/engine/api/v1.41/. Accessed 10 Oct 2021

  49. OpenAPI Initative: OpenAPI Specification - Version 3.1.0 (2021). https://spec.openapis.org/oas/v3.1.0. Accessed 15 Feb 2021

  50. Ierusalimschy, R.: Programming in Lua, 3rd edn. Lua.org, Rio de Janeiro (2013)

    Google Scholar 

  51. Jordan, L., Greyling, P.: Embedding lua in android applications. In: Jordan, L., Greyling, P. (eds.) Practical Android Projects, pp. 155–192. Apress, Berkeley, CA (2011)

    Chapter  Google Scholar 

  52. Tanimura, A., Iwasaki, H.: Integrating lua into C for embedding lua interpreters in a C application. In: Ossowski, S. (ed) Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 1936–1943. ACM, New York, NY, USA (2016)

    Google Scholar 

  53. GitLab Inc.: GitLab Container Registry (2022). https://docs.gitlab.com/ee/user/packages/container_registry. Accessed 13 Jun 2022

  54. Mashkoor, A., Fernandes, J.M.: Deriving software architectures for CRUD applications: the FPL tower interface case study. In: International Conference on Software Engineering Advances (ICSEA 2007), p. 25. IEEE (2007)

    Google Scholar 

  55. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Groth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Groth, M., Dippel, A., Schumann, M. (2023). Enabling the Evaluation of Production Scheduling Algorithms in Complex Production Environments Using Individually Deployable Scheduling Services. In: Gerber, A., Baskerville, R. (eds) Design Science Research for a New Society: Society 5.0. DESRIST 2023. Lecture Notes in Computer Science, vol 13873. Springer, Cham. https://doi.org/10.1007/978-3-031-32808-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32808-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32807-7

  • Online ISBN: 978-3-031-32808-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics