Skip to main content

Rewriting Rules for Arithmetics in Alternate Base Systems

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13911))

Included in the following conference series:

Abstract

For alternate Cantor real base numeration systems we generalize the result of Frougny and Solomyak on arithmetics on the set of numbers with finite expansion. We provide a class of alternate bases which satisfy the so-called finiteness property. The proof uses rewriting rules on the language of expansions in the corresponding numeration system. The proof is constructive and provides a method for performing addition of expansions in Cantor real bases.

The work was supported by projects CZ.02.1.01/0.0/0.0/16_019/0000778 and SGS23/187/OHK4/3T/14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 68.56
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertrand, A.: Développements en base de Pisot et répartition modulo \(1\). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 285(6), A419–A421 (1977)

    Google Scholar 

  2. Caalim, J., Demegillo, S.: Beta Cantor series expansion and admissible sequences. Acta Polytechnica 60(3), 214–224 (2020). https://doi.org/10.14311/ap.2020.60.0214

  3. Charlier, É., Cisternino, C.: Expansions in Cantor real bases. Monatshefte für Mathematik 195(4), 585–610 (2021). https://doi.org/10.1007/s00605-021-01598-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Charlier, É., Cisternino, C., Masáková, Z., Pelantová, E.: Spectrum, algebraicity and normalization in alternate bases. J. Number Theory (2023, to appear). https://doi.org/10.48550/ARXIV.2202.03718

  5. Frougny, C.: Confluent linear numeration systems. Theoret. Comput. Sci. 106(2), 183–219 (1992). https://doi.org/10.1016/0304-3975(92)90249-F

    Article  MathSciNet  MATH  Google Scholar 

  6. Frougny, C., Solomyak, B.: Finite \(\beta \)-expansions. Ergodic Theory Dynam. Syst. 12(4), 713–723 (1992). https://doi.org/10.1017/s0143385700007057

    Article  MathSciNet  MATH  Google Scholar 

  7. Masáková, Z., Pelantová, E., Studeničová, K.: Rewriting rules for arithmetics in alternate base systems (2023). https://doi.org/10.48550/arXiv.2302.10708

  8. Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Scientiarum Hungaricae 8, 477–493 (1957). https://doi.org/10.1007/BF02020331

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Masáková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masáková, Z., Pelantová, E., Studeničová, K. (2023). Rewriting Rules for Arithmetics in Alternate Base Systems. In: Drewes, F., Volkov, M. (eds) Developments in Language Theory. DLT 2023. Lecture Notes in Computer Science, vol 13911. Springer, Cham. https://doi.org/10.1007/978-3-031-33264-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33264-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33263-0

  • Online ISBN: 978-3-031-33264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics