Abstract
For alternate Cantor real base numeration systems we generalize the result of Frougny and Solomyak on arithmetics on the set of numbers with finite expansion. We provide a class of alternate bases which satisfy the so-called finiteness property. The proof uses rewriting rules on the language of expansions in the corresponding numeration system. The proof is constructive and provides a method for performing addition of expansions in Cantor real bases.
The work was supported by projects CZ.02.1.01/0.0/0.0/16_019/0000778 and SGS23/187/OHK4/3T/14.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertrand, A.: Développements en base de Pisot et répartition modulo \(1\). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 285(6), A419–A421 (1977)
Caalim, J., Demegillo, S.: Beta Cantor series expansion and admissible sequences. Acta Polytechnica 60(3), 214–224 (2020). https://doi.org/10.14311/ap.2020.60.0214
Charlier, É., Cisternino, C.: Expansions in Cantor real bases. Monatshefte für Mathematik 195(4), 585–610 (2021). https://doi.org/10.1007/s00605-021-01598-6
Charlier, É., Cisternino, C., Masáková, Z., Pelantová, E.: Spectrum, algebraicity and normalization in alternate bases. J. Number Theory (2023, to appear). https://doi.org/10.48550/ARXIV.2202.03718
Frougny, C.: Confluent linear numeration systems. Theoret. Comput. Sci. 106(2), 183–219 (1992). https://doi.org/10.1016/0304-3975(92)90249-F
Frougny, C., Solomyak, B.: Finite \(\beta \)-expansions. Ergodic Theory Dynam. Syst. 12(4), 713–723 (1992). https://doi.org/10.1017/s0143385700007057
Masáková, Z., Pelantová, E., Studeničová, K.: Rewriting rules for arithmetics in alternate base systems (2023). https://doi.org/10.48550/arXiv.2302.10708
Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Scientiarum Hungaricae 8, 477–493 (1957). https://doi.org/10.1007/BF02020331
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Masáková, Z., Pelantová, E., Studeničová, K. (2023). Rewriting Rules for Arithmetics in Alternate Base Systems. In: Drewes, F., Volkov, M. (eds) Developments in Language Theory. DLT 2023. Lecture Notes in Computer Science, vol 13911. Springer, Cham. https://doi.org/10.1007/978-3-031-33264-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-33264-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33263-0
Online ISBN: 978-3-031-33264-7
eBook Packages: Computer ScienceComputer Science (R0)