Skip to main content

Improving Search in Go Using Bounded Static Safety

  • Conference paper
  • First Online:
Computers and Games (CG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13865))

Included in the following conference series:

  • 293 Accesses

Abstract

Finding the winner of a game of Go is difficult even on small boards due to the game’s complexity. Static safety detection algorithms can find a winner long before the end of a game, thereby reducing the number of board positions that must be searched. These static algorithms find safe points for each player and so help prove the outcome for positions that would otherwise require a deep search. Our board evaluation algorithm Bounded Static Safety (BSS) introduces two new methods for finding valid lower bounds on the number of safe points: extending liberties and intersecting play. These methods define statically evaluated greedy playing strategies to raise the lower bound of a player’s guaranteed score. BSS can solve positions from a test set of \(6\times 6\) games at an average of 27.29 plies, a significant improvement over the previous best static safety method of locally alternating play (31.56 plies), and far surpassing Benson’s unconditional safety (42.67 plies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 46.00
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 58.01
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sensei’s Library. https://senseis.xmp.net/

  2. Benson, D.: Life in the Game of Go. Information Sciences 10, 17–29 (1976). Reprinted in Computer Games, Levy, D.N.L. (ed.), vol. II, pp. 203–213, Springer, New York (1988)

    Google Scholar 

  3. Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego-an open-source framework for board games and go engine based on Monte Carlo tree search. IEEE Trans. Comput. Intell. AI Games 2(4), 259–270 (2010)

    Article  Google Scholar 

  4. Haque, R., Wei, T.H., Müller, M.: On the road to perfection? Evaluating Leela chess zero against endgame tablebases. In: ACG 2021. LNCS, vol. 13262, pp. 142–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-11488-5_13

  5. Kishimoto, A.: Correct and efficient search algorithms in the presence of repetitions. Ph.D. thesis, University of Alberta (2005)

    Google Scholar 

  6. Müller, M.: Playing it safe: recognizing secure territories in computer go by using static rules and search. In: Game Programming Workshop in Japan ’97, pp. 80–86. Computer Shogi Association, Tokyo, Japan (1997)

    Google Scholar 

  7. Niu, X., Kishimoto, A., Müller, M.: Recognizing Seki in computer go. In: van den Herik, H.J., Hsu, S.-C., Hsu, T., Donkers, H.H.L.M.J. (eds.) ACG 2005. LNCS, vol. 4250, pp. 88–103. Springer, Heidelberg (2006). https://doi.org/10.1007/11922155_7

    Chapter  Google Scholar 

  8. Niu, X., Müller, M.: An improved safety solver for computer go. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 97–112. Springer, Heidelberg (2006). https://doi.org/10.1007/11674399_7

    Chapter  Google Scholar 

  9. Niu, X., Müller, M.: An open boundary safety-of-territory solver for the game of go. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 37–49. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_4

    Chapter  Google Scholar 

  10. Niu, X., Müller, M.: An improved safety solver in go using partial regions. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 102–112. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87608-3_10

    Chapter  Google Scholar 

  11. Schaeffer, J., et al.: Checkers is Solved. Science 317(5844), 1518–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a learned model. CoRR abs/1911.08265 (2019). http://arxiv.org/abs/1911.08265

  13. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Google Scholar 

  14. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. CoRR abs/1712.01815 (2017). http://arxiv.org/abs/1712.01815

  15. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017). https://doi.org/10.1038/nature24270

  16. van der Werf, E., Winands, M.: Solving go for rectangular boards. ICGA J. 32(2), 77–88 (2009). https://doi.org/10.3233/ICG-2009-32203

    Article  Google Scholar 

  17. van der Werf, E., Herik, H., Uiterwijk, J.: Solving go on small boards. ICGA J. 26 (2003). https://doi.org/10.3233/ICG-2003-26205

  18. Wu, D.J.: Accelerating self-play learning in go. CoRR abs/1902.10565 (2019). http://arxiv.org/abs/1902.10565

  19. Wu, T.R., Shih, C.C., Wei, T.H., Tsai, M.Y., Hsu, W.Y., Wu, I.C.: AlphaZero-based proof cost network to aid game solving. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=nKWjE4QF1hB

  20. Wu, T.R., et al.: Multi-labelled value networks for computer go. CoRR abs/1705.10701 (2017). http://arxiv.org/abs/1705.10701

Download references

Acknowledgements

The authors acknowledge financial support from NSERC, the Natural Sciences and Engineering Research Council of Canada, Alberta Innovates, DeepMind, and the Canada CIFAR AI Chair program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Randall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Randall, O., Wei, TH., Hayward, R., Müller, M. (2023). Improving Search in Go Using Bounded Static Safety. In: Browne, C., Kishimoto, A., Schaeffer, J. (eds) Computers and Games. CG 2022. Lecture Notes in Computer Science, vol 13865. Springer, Cham. https://doi.org/10.1007/978-3-031-34017-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34017-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34016-1

  • Online ISBN: 978-3-031-34017-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics