Abstract
Multi-label Zero-Shot Learning (ZSL) is an extension of traditional single-label ZSL, where the objective is to accurately classify images containing multiple unseen classes that are not available during training. Current techniques depends on attention mechanisms and Generative Adversarial Networks (GAN) to address multi-label ZSL and Generalized Zero-Shot Learning (GZSL) challenge. However, generating features for both multi-label ZSL and GZSL in the context of disentangled representation learning remains unexplored. In this paper, we propose an identifiable Variational Autoencoder (iVAE) based generative framework for multi-label ZSL and GZSL. The main idea of our proposed approach is to learn disentangled representations for generating semantically consistent multi-label features using an attribute-level feature fusion technique. We perform comprehensive experiments on two benchmark datasets, NUS-WIDE and MS COCO, for both multi-label ZSL and GZSL. Furthermore, disentangled representation learning for both multi-label ZSL and GZSL on standard datasets achieves commendable performance as compared to existing methods.
Supported by National University of Sciences and Technology (NUST).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1425–1438 (2015)
Ben-Cohen, A., Zamir, N., Ben-Baruch, E., Friedman, I., Zelnik-Manor, L.: Semantic diversity learning for zero-shot multi-label classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 640–650 (2021)
Chen, R.T., Li, X., Grosse, R.B., Duvenaud, D.K.: Isolating sources of disentanglement in variational autoencoders. Advances in neural information processing systems 31 (2018)
Chen, Z.M., Cui, Q., Wei, X.S., Jin, X., Guo, Y.: Disentangling, embedding and ranking label cues for multi-label image recognition. IEEE Trans. Multimedia 23, 1827–1840 (2020)
Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5177–5186 (2019)
Cheng, X., Lin, H., Wu, X., Shen, D., Yang, F., Liu, H., Shi, N.: Mltr: Multi-label classification with transformer. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2022)
Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from national university of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Durand, T., Mehrasa, N., Mori, G.: Learning a deep convnet for multi-label classification with partial labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 647–657 (2019)
Felix, R., Kumar, V.B., Reid, I., Carneiro, G.: Multi-modal cycle-consistent generalized zero-shot learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 21–37 (2018)
Feng, L., An, B., He, S.: Collaboration based multi-label learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3550–3557 (2019)
Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Advances in Neural Information Processing Systems, pp. 2121–2129 (2013)
Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot learning. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2332–2345 (2015)
Fujiyoshi, H., Hirakawa, T., Yamashita, T.: Deep learning-based image recognition for autonomous driving. IATSS Res. 43(4), 244–252 (2019)
Gong, Y., Jia, Y., Leung, T., Toshev, A., Ioffe, S.: Deep convolutional ranking for multilabel image annotation. arXiv preprint arXiv:1312.4894 (2013)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)
Gupta, A., Narayan, S., Khan, S., Khan, F.S., Shao, L., van de Weijer, J.: Generative multi-label zero-shot learning. arXiv preprint arXiv:2101.11606 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Higgins, I., et al.: beta-vae: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)
Huang, H., Wang, C., Yu, P.S., Wang, C.D.: Generative dual adversarial network for generalized zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 801–810 (2019)
Huynh, D., Elhamifar, E.: A shared multi-attention framework for multi-label zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8776–8786 (2020)
Hyvarinen, A., Morioka, H.: Unsupervised feature extraction by time-contrastive learning and nonlinear ICA. In: Advances in Neural Information Processing Systems, pp. 3765–3773 (2016)
Hyvarinen, A., Morioka, H.: Nonlinear ICA of temporally dependent stationary sources. In: Artificial Intelligence and Statistics, pp. 460–469. PMLR (2017)
Hyvarinen, A., Sasaki, H., Turner, R.: Nonlinear ICA using auxiliary variables and generalized contrastive learning. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 859–868 (2019)
Jayaraman, D., Grauman, K.: Zero-shot recognition with unreliable attributes. Advances in neural information processing systems 27 (2014)
Jeon, I., Lee, W., Kim, G.: Ib-gan: disentangled representation learning with information bottleneck gan (2018)
Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)
Khemakhem, I., Kingma, D., Monti, R., Hyvarinen, A.: Variational autoencoders and nonlinear ICA: a unifying framework. In: International Conference on Artificial Intelligence and Statistics, pp. 2207–2217 (2020)
Kim, H., Mnih, A.: Disentangling by factorising. In: International Conference on Machine Learning, pp. 2649–2658. PMLR (2018)
Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. Advances in neural information processing systems 31 (2018)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Kumar, A., Sattigeri, P., Balakrishnan, A.: Variational inference of disentangled latent concepts from unlabeled observations. arXiv preprint arXiv:1711.00848 (2017)
Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958 (2009). https://doi.org/10.1109/CVPR.2009.5206594
Lanchantin, J., Wang, T., Ordonez, V., Qi, Y.: General multi-label image classification with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16478–16488 (2021)
Lee, C.W., Fang, W., Yeh, C.K., Wang, Y.C.F.: Multi-label zero-shot learning with structured knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1576–1585 (2018)
Li, J., Jing, M., Lu, K., Ding, Z., Zhu, L., Huang, Z.: Leveraging the invariant side of generative zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7402–7411 (2019)
Li, Q., Qiao, M., Bian, W., Tao, D.: Conditional graphical lasso for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2977–2986 (2016)
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 844–848. IEEE (2014)
Li, S., Hooi, B., Lee, G.H.: Identifying through flows for recovering latent representations. arXiv preprint arXiv:1909.12555 (2019)
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, B., Zhu, Y., Fu, Z., de Melo, G., Elgammal, A.: Oogan: disentangling gan with one-hot sampling and orthogonal regularization. In: AAAI, pp. 4836–4843 (2020)
Liu, S., Zhang, L., Yang, X., Su, H., Zhu, J.: Query2label: a simple transformer way to multi-label classification. arXiv preprint arXiv:2107.10834 (2021)
Liu, Z., Guo, S., Guo, J., Xu, Y., Huo, F.: Towards unbiased multi-label zero-shot learning with pyramid and semantic attention (2022)
Nam, J., Loza MencÃa, E., Kim, H.J., Fürnkranz, J.: Maximizing subset accuracy with recurrent neural networks in multi-label classification. Advances in neural information processing systems 30 (2017)
Narayan, S., Gupta, A., Khan, S., Khan, F.S., Shao, L., Shah, M.: Discriminative region-based multi-label zero-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8731–8740 (2021)
Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: Hologan: unsupervised learning of 3d representations from natural images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7588–7597 (2019)
Norouzi, M., et al.: Zero-shot learning by convex combination of semantic embeddings. In: International Conference on Learning Representations (2013)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)
Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021)
Ridnik, T., Sharir, G., Ben-Cohen, A., Ben-Baruch, E., Noy, A.: Ml-decoder: scalable and versatile classification head. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 32–41 (2023)
Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161 (2015)
Shen, Y., Qin, J., Huang, L., Liu, L., Zhu, F., Shao, L.: Invertible zero-shot recognition flows. In: Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, pp. 614–631. Springer (2020)
Shi, M., Tang, Y., Zhu, X., Liu, J.: Multi-label graph convolutional network representation learning. IEEE Trans. Big Data 8(5), 1169–1181 (2020)
Tsoumakas, G., Katakis, I.: Multi-label classification: An overview international journal of data warehousing and mining. The label powerset algorithm is called PT3 3(3) (2006)
Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehousing Mining (IJDWM) 3(3), 1–13 (2007)
Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a unified framework for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2016)
Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–37 (2019)
Weston, J., Bengio, S., Usunier, N.: Wsabie: scaling up to large vocabulary image annotation (2011)
Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5542–5551 (2018)
Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning-the good, the bad and the ugly. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4582–4591 (2017)
Xian, Y., Sharma, S., Schiele, B., Akata, Z.: f-vaegan-d2: a feature generating framework for any-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10275–10284 (2019)
Xie, G.S., Liu, L., Jin, X., Zhu, F., Zhang, Z., Qin, J., Yao, Y., Shao, L.: Attentive region embedding network for zero-shot learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9376–9385 (2019). https://doi.org/10.1109/CVPR.2019.00961
Xu, S., Li, Y., Hsiao, J., Ho, C., Qi, Z.: A dual modality approach for (zero-shot) multi-label classification (2022)
Yang, H., Tianyi Zhou, J., Zhang, Y., Gao, B.B., Wu, J., Cai, J.: Exploit bounding box annotations for multi-label object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–288 (2016)
Yazici, V.O., Gonzalez-Garcia, A., Ramisa, A., Twardowski, B., Weijer, J.v.d.: Orderless recurrent models for multi-label classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13440–13449 (2020)
Ye, J., He, J., Peng, X., Wu, W., Qiao, Yu.: Attention-driven dynamic graph convolutional network for multi-label image recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_39
You, R., Guo, Z., Cui, L., Long, X., Bao, Y., Wen, S.: Cross-modality attention with semantic graph embedding for multi-label classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12709–12716 (2020)
Yu, H.F., Jain, P., Kar, P., Dhillon, I.: Large-scale multi-label learning with missing labels. In: International Conference on Machine Learning, pp. 593–601. PMLR (2014)
Zhang, Y., Gong, B., Shah, M.: Fast zero-shot image tagging. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5985–5994. IEEE (2016)
Zhu, F., Li, H., Ouyang, W., Yu, N., Wang, X.: Learning spatial regularization with image-level supervisions for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5513–5522 (2017)
Acknowledgements
The authors express their heartfelt gratitude to the editors and anonymous reviewers for their insightful feedback. This research was made possible through the support of the National University of Sciences and Technology (NUST) in Islamabad, Pakistan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gull, M., Arif, O. (2023). Multi-label Generalized Zero-Shot Learning Using Identifiable Variational Autoencoders. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2023. Lecture Notes in Computer Science, vol 14219. Springer, Cham. https://doi.org/10.1007/978-3-031-43404-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-43404-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43403-7
Online ISBN: 978-3-031-43404-4
eBook Packages: Computer ScienceComputer Science (R0)