Skip to main content

Multi-label Generalized Zero-Shot Learning Using Identifiable Variational Autoencoders

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14219))

Included in the following conference series:

  • 1016 Accesses

Abstract

Multi-label Zero-Shot Learning (ZSL) is an extension of traditional single-label ZSL, where the objective is to accurately classify images containing multiple unseen classes that are not available during training. Current techniques depends on attention mechanisms and Generative Adversarial Networks (GAN) to address multi-label ZSL and Generalized Zero-Shot Learning (GZSL) challenge. However, generating features for both multi-label ZSL and GZSL in the context of disentangled representation learning remains unexplored. In this paper, we propose an identifiable Variational Autoencoder (iVAE) based generative framework for multi-label ZSL and GZSL. The main idea of our proposed approach is to learn disentangled representations for generating semantically consistent multi-label features using an attribute-level feature fusion technique. We perform comprehensive experiments on two benchmark datasets, NUS-WIDE and MS COCO, for both multi-label ZSL and GZSL. Furthermore, disentangled representation learning for both multi-label ZSL and GZSL on standard datasets achieves commendable performance as compared to existing methods.

Supported by National University of Sciences and Technology (NUST).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 69.54
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 86.50
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1425–1438 (2015)

    Article  Google Scholar 

  2. Ben-Cohen, A., Zamir, N., Ben-Baruch, E., Friedman, I., Zelnik-Manor, L.: Semantic diversity learning for zero-shot multi-label classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 640–650 (2021)

    Google Scholar 

  3. Chen, R.T., Li, X., Grosse, R.B., Duvenaud, D.K.: Isolating sources of disentanglement in variational autoencoders. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  4. Chen, Z.M., Cui, Q., Wei, X.S., Jin, X., Guo, Y.: Disentangling, embedding and ranking label cues for multi-label image recognition. IEEE Trans. Multimedia 23, 1827–1840 (2020)

    Article  Google Scholar 

  5. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5177–5186 (2019)

    Google Scholar 

  6. Cheng, X., Lin, H., Wu, X., Shen, D., Yang, F., Liu, H., Shi, N.: Mltr: Multi-label classification with transformer. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2022)

    Google Scholar 

  7. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from national university of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Durand, T., Mehrasa, N., Mori, G.: Learning a deep convnet for multi-label classification with partial labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 647–657 (2019)

    Google Scholar 

  10. Felix, R., Kumar, V.B., Reid, I., Carneiro, G.: Multi-modal cycle-consistent generalized zero-shot learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 21–37 (2018)

    Google Scholar 

  11. Feng, L., An, B., He, S.: Collaboration based multi-label learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3550–3557 (2019)

    Google Scholar 

  12. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Advances in Neural Information Processing Systems, pp. 2121–2129 (2013)

    Google Scholar 

  13. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot learning. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2332–2345 (2015)

    Article  Google Scholar 

  14. Fujiyoshi, H., Hirakawa, T., Yamashita, T.: Deep learning-based image recognition for autonomous driving. IATSS Res. 43(4), 244–252 (2019)

    Article  Google Scholar 

  15. Gong, Y., Jia, Y., Leung, T., Toshev, A., Ioffe, S.: Deep convolutional ranking for multilabel image annotation. arXiv preprint arXiv:1312.4894 (2013)

  16. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)

    Google Scholar 

  17. Gupta, A., Narayan, S., Khan, S., Khan, F.S., Shao, L., van de Weijer, J.: Generative multi-label zero-shot learning. arXiv preprint arXiv:2101.11606 (2021)

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Higgins, I., et al.: beta-vae: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)

    Google Scholar 

  20. Huang, H., Wang, C., Yu, P.S., Wang, C.D.: Generative dual adversarial network for generalized zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 801–810 (2019)

    Google Scholar 

  21. Huynh, D., Elhamifar, E.: A shared multi-attention framework for multi-label zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8776–8786 (2020)

    Google Scholar 

  22. Hyvarinen, A., Morioka, H.: Unsupervised feature extraction by time-contrastive learning and nonlinear ICA. In: Advances in Neural Information Processing Systems, pp. 3765–3773 (2016)

    Google Scholar 

  23. Hyvarinen, A., Morioka, H.: Nonlinear ICA of temporally dependent stationary sources. In: Artificial Intelligence and Statistics, pp. 460–469. PMLR (2017)

    Google Scholar 

  24. Hyvarinen, A., Sasaki, H., Turner, R.: Nonlinear ICA using auxiliary variables and generalized contrastive learning. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 859–868 (2019)

    Google Scholar 

  25. Jayaraman, D., Grauman, K.: Zero-shot recognition with unreliable attributes. Advances in neural information processing systems 27 (2014)

    Google Scholar 

  26. Jeon, I., Lee, W., Kim, G.: Ib-gan: disentangled representation learning with information bottleneck gan (2018)

    Google Scholar 

  27. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  28. Khemakhem, I., Kingma, D., Monti, R., Hyvarinen, A.: Variational autoencoders and nonlinear ICA: a unifying framework. In: International Conference on Artificial Intelligence and Statistics, pp. 2207–2217 (2020)

    Google Scholar 

  29. Kim, H., Mnih, A.: Disentangling by factorising. In: International Conference on Machine Learning, pp. 2649–2658. PMLR (2018)

    Google Scholar 

  30. Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  31. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  32. Kumar, A., Sattigeri, P., Balakrishnan, A.: Variational inference of disentangled latent concepts from unlabeled observations. arXiv preprint arXiv:1711.00848 (2017)

  33. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958 (2009). https://doi.org/10.1109/CVPR.2009.5206594

  34. Lanchantin, J., Wang, T., Ordonez, V., Qi, Y.: General multi-label image classification with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16478–16488 (2021)

    Google Scholar 

  35. Lee, C.W., Fang, W., Yeh, C.K., Wang, Y.C.F.: Multi-label zero-shot learning with structured knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1576–1585 (2018)

    Google Scholar 

  36. Li, J., Jing, M., Lu, K., Ding, Z., Zhu, L., Huang, Z.: Leveraging the invariant side of generative zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7402–7411 (2019)

    Google Scholar 

  37. Li, Q., Qiao, M., Bian, W., Tao, D.: Conditional graphical lasso for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2977–2986 (2016)

    Google Scholar 

  38. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 844–848. IEEE (2014)

    Google Scholar 

  39. Li, S., Hooi, B., Lee, G.H.: Identifying through flows for recovering latent representations. arXiv preprint arXiv:1909.12555 (2019)

  40. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  41. Liu, B., Zhu, Y., Fu, Z., de Melo, G., Elgammal, A.: Oogan: disentangling gan with one-hot sampling and orthogonal regularization. In: AAAI, pp. 4836–4843 (2020)

    Google Scholar 

  42. Liu, S., Zhang, L., Yang, X., Su, H., Zhu, J.: Query2label: a simple transformer way to multi-label classification. arXiv preprint arXiv:2107.10834 (2021)

  43. Liu, Z., Guo, S., Guo, J., Xu, Y., Huo, F.: Towards unbiased multi-label zero-shot learning with pyramid and semantic attention (2022)

    Google Scholar 

  44. Nam, J., Loza Mencía, E., Kim, H.J., Fürnkranz, J.: Maximizing subset accuracy with recurrent neural networks in multi-label classification. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  45. Narayan, S., Gupta, A., Khan, S., Khan, F.S., Shao, L., Shah, M.: Discriminative region-based multi-label zero-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8731–8740 (2021)

    Google Scholar 

  46. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: Hologan: unsupervised learning of 3d representations from natural images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7588–7597 (2019)

    Google Scholar 

  47. Norouzi, M., et al.: Zero-shot learning by convex combination of semantic embeddings. In: International Conference on Learning Representations (2013)

    Google Scholar 

  48. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  49. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  50. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)

    Google Scholar 

  51. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021)

  52. Ridnik, T., Sharir, G., Ben-Cohen, A., Ben-Baruch, E., Noy, A.: Ml-decoder: scalable and versatile classification head. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 32–41 (2023)

    Google Scholar 

  53. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161 (2015)

    Google Scholar 

  54. Shen, Y., Qin, J., Huang, L., Liu, L., Zhu, F., Shao, L.: Invertible zero-shot recognition flows. In: Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, pp. 614–631. Springer (2020)

    Google Scholar 

  55. Shi, M., Tang, Y., Zhu, X., Liu, J.: Multi-label graph convolutional network representation learning. IEEE Trans. Big Data 8(5), 1169–1181 (2020)

    Article  Google Scholar 

  56. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview international journal of data warehousing and mining. The label powerset algorithm is called PT3 3(3) (2006)

    Google Scholar 

  57. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehousing Mining (IJDWM) 3(3), 1–13 (2007)

    Article  Google Scholar 

  58. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a unified framework for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2016)

    Google Scholar 

  59. Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–37 (2019)

    Google Scholar 

  60. Weston, J., Bengio, S., Usunier, N.: Wsabie: scaling up to large vocabulary image annotation (2011)

    Google Scholar 

  61. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5542–5551 (2018)

    Google Scholar 

  62. Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning-the good, the bad and the ugly. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4582–4591 (2017)

    Google Scholar 

  63. Xian, Y., Sharma, S., Schiele, B., Akata, Z.: f-vaegan-d2: a feature generating framework for any-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10275–10284 (2019)

    Google Scholar 

  64. Xie, G.S., Liu, L., Jin, X., Zhu, F., Zhang, Z., Qin, J., Yao, Y., Shao, L.: Attentive region embedding network for zero-shot learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9376–9385 (2019). https://doi.org/10.1109/CVPR.2019.00961

  65. Xu, S., Li, Y., Hsiao, J., Ho, C., Qi, Z.: A dual modality approach for (zero-shot) multi-label classification (2022)

    Google Scholar 

  66. Yang, H., Tianyi Zhou, J., Zhang, Y., Gao, B.B., Wu, J., Cai, J.: Exploit bounding box annotations for multi-label object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–288 (2016)

    Google Scholar 

  67. Yazici, V.O., Gonzalez-Garcia, A., Ramisa, A., Twardowski, B., Weijer, J.v.d.: Orderless recurrent models for multi-label classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13440–13449 (2020)

    Google Scholar 

  68. Ye, J., He, J., Peng, X., Wu, W., Qiao, Yu.: Attention-driven dynamic graph convolutional network for multi-label image recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_39

    Chapter  Google Scholar 

  69. You, R., Guo, Z., Cui, L., Long, X., Bao, Y., Wen, S.: Cross-modality attention with semantic graph embedding for multi-label classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12709–12716 (2020)

    Google Scholar 

  70. Yu, H.F., Jain, P., Kar, P., Dhillon, I.: Large-scale multi-label learning with missing labels. In: International Conference on Machine Learning, pp. 593–601. PMLR (2014)

    Google Scholar 

  71. Zhang, Y., Gong, B., Shah, M.: Fast zero-shot image tagging. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5985–5994. IEEE (2016)

    Google Scholar 

  72. Zhu, F., Li, H., Ouyang, W., Yu, N., Wang, X.: Learning spatial regularization with image-level supervisions for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5513–5522 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors express their heartfelt gratitude to the editors and anonymous reviewers for their insightful feedback. This research was made possible through the support of the National University of Sciences and Technology (NUST) in Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muqaddas Gull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gull, M., Arif, O. (2023). Multi-label Generalized Zero-Shot Learning Using Identifiable Variational Autoencoders. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2023. Lecture Notes in Computer Science, vol 14219. Springer, Cham. https://doi.org/10.1007/978-3-031-43404-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43404-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43403-7

  • Online ISBN: 978-3-031-43404-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics