Skip to main content

Analysis of the Battery Level in Complex Wireless Sensor Networks Using a Two Time Scales Second Order Fluid Model

  • Conference paper
  • First Online:
Practical Applications of Stochastic Modelling (PASM 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1786))

  • 104 Accesses

Abstract

Battery operated Wireless Sensor Networks (WSNs) are currently one of the most important research areas related to applications: the possibility of running complex algorithms and off-load tasks using Fog and Edge computing techniques, as well as the ability of increasing the battery lifetime adopting energy harvesting, together with the communication capabilities offered by infrastructures such as 5G, are just some of the reasons for which this topic continues to be one of the most challenging and interesting. In this paper we focus on the problem of modeling the battery evolution of the devices, focusing on the issues created by the two time scales at which system evolves: tasks execution, sensor readings, and network operations occur at a small time scale, while energy harvesting and battery depletion runs on a much larger time frame. We propose a fluid model for the entire system, and we analyze it in two steps: we first focus on the small time scales to produce a simplified Second Order Fluid Model (SOFM), which later is used to reproduce the evolution at the large time frame. We analyze the considered models using discrete event simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is a simplification of the actual solicitation model, suitable for the purposes of this paper: we considered more realistic scenarios in [2].

  2. 2.

    Those rates must be set accordingly with the actual seasonal local weather phenomena: this is a simple modelization, but a similar approach as the upper part may be used to represent a more complex variability pattern. The effect of a token in the \(H_{OFF}\) place can alternatively represent both a lower efficiency or a deactivation of the solar panel, as needed by the real conditions of the actual system.

References

  1. Barbierato, E., Gribaudo, M., Iacono, M., Piazzolla, P.: Second order fluid performance evaluation models for interactive 3D multimedia streaming. In: Bakhshi, R., Ballarini, P., Barbot, B., Castel-Taleb, H., Remke, A. (eds.) EPEW 2018. LNCS, vol. 11178, pp. 205–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02227-3_14

    Chapter  Google Scholar 

  2. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., Mastroianni, M.: A DSL-based modeling approach for energy harvesting IoT/WSN. In: Proceedings - European Council for Modelling and Simulation, ECMS, May 2022, pp. 317–323 (2022)

    Google Scholar 

  3. Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., Mastroianni, M.: Computer network simulation with ns-3: a systematic literature review. Electronics 9(2), 272 (2020). https://doi.org/10.3390/electronics9020272

    Article  Google Scholar 

  4. Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M.: Hybrid simulation of energy management in IoT edge computing surveillance systems. In: Ballarini, P., Castel, H., Dimitriou, I., Iacono, M., Phung-Duc, T., Walraevens, J. (eds.) EPEW/ASMTA -2021. LNCS, vol. 13104, pp. 345–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91825-5_21

    Chapter  Google Scholar 

  5. Campanile, L., Iacono, M., Marulli, F., Mastroianni, M., Mazzocca, N.: Toward a fuzzy-based approach for computational load offloading of IoT devices. J. Univers. Comput. Sci. 26(11), 1455–1474 (2020)

    Google Scholar 

  6. Cerotti, D., Mancini, S., Gribaudo, M., Bobbio, A.: Analysis of an electric vehicle charging system along a highway. In: Ábrahám, E., Paolieri, M. (eds.) QEST 2022. LNCS, vol. 13479, pp. 298–316. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-16336-4_15

    Chapter  Google Scholar 

  7. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Network. 24(5), 2795–2808 (2016)

    Article  Google Scholar 

  8. Gribaudo, M., Sereno, M., Horváth, A., Bobbio, A.: Fluid stochastic Petri nets augmented with flush-out arcs: modelling and analysis. Discret. Event Dyn. Syst. 11(1/2), 97–117 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gribaudo, M., Iacono, M., Manini, D.: Simulation of N-dimensional second-order fluid models with different absorbing, reflecting and mixed barriers. In: Abate, A., Marin, A. (eds.) QEST 2021. LNCS, vol. 12846, pp. 276–292. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85172-9_15

    Chapter  MATH  Google Scholar 

  10. Huang, D., Wang, P., Niyato, D.: A dynamic offloading algorithm for mobile computing. IEEE Trans. Wirel. Commun. 11(6), 1991–1995 (2012)

    Article  Google Scholar 

  11. Jha, D.N., et al.: IoTsim-edge: a simulation framework for modeling the behavior of internet of things and edge computing environments. Softw. Pract. Exp. 50(6), 844–867 (2020)

    Google Scholar 

  12. Liu, L., Chang, Z., Guo, X.: Socially aware dynamic computation offloading scheme for fog computing system with energy harvesting devices. IEEE Internet Things J. 5(3), 1869–1879 (2018)

    Article  Google Scholar 

  13. Shah-Mansouri, H., Wong, V.W.S.: Hierarchical fog-cloud computing for IoT systems: a computation offloading game. IEEE Internet Things J. 5(4), 3246–3257 (2018)

    Article  Google Scholar 

  14. Telek, M., Rácz, S.: Numerical analysis of large Markov reward models. Perform. Eval. 36–37(1–4), 95–114 (1999)

    Article  MATH  Google Scholar 

  15. Trinh, H., et al.: Energy-aware mobile edge computing and routing for low-latency visual data processing. IEEE Trans. Multimedia 20(10), 2562–2577 (2018)

    Article  Google Scholar 

  16. Zhang, G., Chen, Y., Shen, Z., Wang, L.: Distributed energy management for multiuser mobile-edge computing systems with energy harvesting devices and QOS constraints. IEEE Internet Things J. 6(3), 4035–4048 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the internal competitive funding program “VALERE: VAnviteLli pEr la RicErca” of Università degli Studi della Campania “Luigi Vanvitelli” and is part of the research activities developed within the project PON “Ricerca e Innovazione” 2014–2020, action IV.6 “Contratti di ricerca su tematiche Green”, issued by Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Iacono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gribaudo, M., Iacono, M., Manini, D., Mastroianni, M. (2023). Analysis of the Battery Level in Complex Wireless Sensor Networks Using a Two Time Scales Second Order Fluid Model. In: Forshaw, M., Gilly, K., Knottenbelt, W., Thomas, N. (eds) Practical Applications of Stochastic Modelling. PASM 2022. Communications in Computer and Information Science, vol 1786. Springer, Cham. https://doi.org/10.1007/978-3-031-44053-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44053-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44052-6

  • Online ISBN: 978-3-031-44053-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics