Skip to main content

Prediction of Health of Corals Mussismilia hispida Based on the Microorganisms Present in their Microbiome

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2023)

Abstract

One of the most diverse and productive marine ecosystems in the world are the corals, providing not only tourism but also an important economic contribution to the countries that have them on their coasts. Thanks to genome sequencing techniques, it is possible to identify the microorganisms that form the coral microbiome. The generation of large amounts of data, thanks to the low cost of sequencing since 2005, provides an opening for the use of artificial neural networks for the advancement of sciences such as biology and medicine. This work aims to predict the healthy microbiome present in samples of Mussismilia hispida coral, using machine learning algorithms, in which the algorithms SVM, Decision Tree, and Random Forest achieved a rate of 61%, 74%, and 72%, respectively. Additionally, it aims to identify possible microorganisms related to the disease in question in corals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 84.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Courtial, A., Furla, C., Scientifique, D., Paola, F., Marine, S.: Coraux: les ingenieurs des océans sont menacés, pp. 1–10 (2021)

    Google Scholar 

  2. Zilberberg, C., Abrantes, D.P., Marques, J.A., Machado, L.F., Marangoni, L.F.d.B.: Conhecendo os Recifes Brasileiros: Rede de Pesquisas Coral Vivo (2016). http://coralvivo.org.br/arquivos/documentos/Livro-Zilberberg-et-al-2016-Conhecendo-os-Recifes-Brasileiros-Rede-de-Pesquisas-Coral-Vivo.pdf. http://coralvivo.org.br/wp-content/uploads/arquivos/2308file-3. pdf

  3. Riyuzo, R.: Analise de microbioma a partir de sequências de 16sr rna: Asv ou otu? (2020). https://blog.varsomics.com/analise-de-microbioma-a-partir-de-sequencias-de-16sr-rna-asv-ou-otu/

  4. Thompson, F., Thompson,C.: Biotecnologia marinha, p. 855 (2020)

    Google Scholar 

  5. Bolyen, E.: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019). https://doi.org/10.1038/s41587-019-0209-9

    Article  Google Scholar 

  6. Regier, Y., et al.: Combination of microbiome analysis and serodiagnostics to assess the risk of pathogen transmission by ticks to humans and animals in central Germany 11 Medical and Health Sciences 1108 Medical Microbiology. Parasit. Vectors 12(1), 1–17 (2019)

    MathSciNet  Google Scholar 

  7. Haykin, S., Neurais, R.: Princípios e Prática. Artmed (2007). https://books.google.com.br/books?id=bhMwDwAAQBAJ

  8. Goncalves, A.R.: Fundamentos e Aplicacões de Técnicas de Aprendizado de Maquina (2008). https://andreric.github.io/posts/2018/05/blog-post-2/

  9. Faceli, K., Lorena, C., Gama, J., Almeida, A.D.: Inteligencia \(\hat{}\) artificial: uma abordagem de aprendizado de maquina. Grupo GEN (2021). https://integrada.minhabiblioteca.com.br/books/9788521637509

  10. Breiman, L.: Random forests (2001)

    Google Scholar 

  11. Ali, J., Khan, R., Khan, R., Ahmad, N., Maqsood, I., Maqsood, I.: Random forests and decision trees (2012)

    Google Scholar 

  12. Leite, D.C.A., et al.: Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front. Microbiol. 9, 833 (2018). https://www.frontiersin.org/article/10.3389/fmicb.2018.00833

  13. Zilberberg, C., et al.: Conhecendo os Recifes Brasileiros: Rede de Pesquisas Coral Vivo [s.n.], 360 p. (2016). ISBN 978-85-7427-057-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Catharine de Assis Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barque, B.M., Rodrigues, P.J.S., de Paula Filho, P.L., Peixoto, R.S., de Assis Leite, D.C. (2024). Prediction of Health of Corals Mussismilia hispida Based on the Microorganisms Present in their Microbiome. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1981. Springer, Cham. https://doi.org/10.1007/978-3-031-53025-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53025-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53024-1

  • Online ISBN: 978-3-031-53025-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics