Skip to main content

Dynamic Offloading Based on Meta Deep Reinforcement Learning and Load Prediction in Smart Home Edge Computing

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

In the edge computing enabled smart home scenario. Various smart home devices generate a large number of computing tasks, and users can offload these tasks to servers or perform them locally. Offloading to the server will result in lower delay, but it will also require paying the corresponding offloading cost. Therefore, users need to consider the low delay and additional costs caused by offloading. Different users have different trade-offs between latency and offload costs at different times. If the trade-off is set as a fixed hyperparameter, it will give users a poor experience. In the case of dynamic trade-offs, the model may have difficulty adapting to arrive at an optimal offloading decision. By jointly optimizing the task delay and offloading cost, We model it as a long-term cost minimization problem under dynamic trade-off (DT-LCMP). To solve the problem, we propose an offloading algorithm based on multi-agent meta deep reinforcement learning and load prediction (MAMRL-L). Combined with the idea of meta-learning, the DDQN method is used to train the network. By training the sampling data in different environments, the agent can adapt to the dynamic environment quickly. In order to improve the performance of the model, LSTNet is used to predict the load level of the next slot server in real time. The simulation results show that our algorithm has higher performance than the existing algorithms and benchmark algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 89.66
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Naeem, M., et al.: Trends and future perspective challenges in big data. Smart Innov., Syst. Technol. 253, 309–325 (2022)

    Article  Google Scholar 

  2. Durao, F., et al.: A systematic review on cloud computing. J. Supercomput. 68(3), 1321–1346 (2014)

    Article  Google Scholar 

  3. Cao, K., et al.: An overview on edge computing research. IEEE Access 8, 85714–85728 (2020)

    Article  Google Scholar 

  4. Kopytko, V., et al.: Smart home and artificial intelligence as environment for the implementation of new technologies. Path Sci. 4(9), 2007–2012 (2018)

    Article  Google Scholar 

  5. Huh, J.H., Seo, K.: Artificial intelligence shoe cabinet using deep learning for smart home. In: Park, J., Loia, V., Choo, K.K., Yi, G. (eds.) Advanced Multimedia and Ubiquitous Engineering. Lecture Notes in Electrical Engineering, vol. 518, pp. 825–834. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1328-8_108

    Chapter  Google Scholar 

  6. Guo, X., et al.: Review on the application of artificial intelligence in smart homes. Smart Cities 2(3), 402–420 (2019)

    Article  Google Scholar 

  7. Jeon, Y., et al.: Mobility-aware optimal task offloading in distributed edge computing. In: International Conference on Information Networking, 2021-January, pp. 65–68 (2021)

    Google Scholar 

  8. Wu, Y., et al.: Noma-assisted multi-access mobile edge computing: a joint optimization of computation offloading and time allocation. IEEE Trans. Veh. Technol. 67(12), 12244–12258 (2018)

    Article  Google Scholar 

  9. Zhang, T.: Data offloading in mobile edge computing: a coalition and pricing based approach. IEEE Access 6, 2760–2767 (2017)

    Article  Google Scholar 

  10. Huang, X., et al.: Vehicle speed aware computing task offloading and resource allocation based on multi-agent reinforcement learning in a vehicular edge computing network. In: Proceedings - 2020 IEEE 13th International Conference on Edge Computing, EDGE 2020, pp. 1–8 (2020)

    Google Scholar 

  11. Tu, Y., et al.: Task offloading based on LSTM prediction and deep reinforcement learning for efficient edge computing in IoT. Future Internet 14(2), 30 (2022)

    Article  Google Scholar 

  12. Zhou, H., et al.: Energy efficient joint computation offloading and service caching for mobile edge computing: a deep reinforcement learning approach. IEEE Trans. Green Commun. Netw. 7(2), 950–961 (2023)

    Article  Google Scholar 

  13. Huang, L., et al.: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing. Digit. Commun. Netw. 5(1), 10–17 (2019)

    Article  Google Scholar 

  14. Beck, J., et al.: A survey of meta-reinforcement learning (2023)

    Google Scholar 

  15. Finn, C., et al.: Model-agnostic meta-learning for fast adaptation of deep networks (2017). https://proceedings.mlr.press/v70/finn17a.html

  16. Jiang, H., et al.: Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. (2022)

    Google Scholar 

  17. Luo, J., et al.: QoE-driven computation offloading for edge computing. J. Syst. Architect. 97, 34–39 (2019)

    Article  Google Scholar 

  18. Park, J., Chung, K.: Distributed DRL-based computation offloading scheme for improving QoE in edge computing environments. Sensors 23(8), 4166 (2023)

    Article  Google Scholar 

  19. Zhou, Z., et al.: QoE-guaranteed heterogeneous task offloading with deep reinforcement learning in edge computing. In: Proceedings of 2022 8th IEEE International Conference on Cloud Computing and Intelligence Systems, CCIS 2022, pp. 558–564 (2022)

    Google Scholar 

  20. Zhu, B., et al.: Efficient offloading for minimizing task computation delay of NOMA-based multiaccess edge computing. IEEE Trans. Commun. 70(5), 3186–3203 (2022)

    Article  MathSciNet  Google Scholar 

  21. Zhang, S., et al.: DRL-based partial offloading for maximizing sum computation rate of wireless powered mobile edge computing network. IEEE Trans. Wirel. Commun. 21(12), 10934–10948 (2022)

    Article  Google Scholar 

  22. Chen, Y., et al.: Dynamic task offloading for mobile edge computing with hybrid energy supply. Tsinghua Sci. Technol. 28(3), 421–432 (2023)

    Article  Google Scholar 

  23. Tong, Z., et al.: Stackelberg game-based task offloading and pricing with computing capacity constraint in mobile edge computing. J. Syst. Architect. 137, 102847 (2023)

    Article  Google Scholar 

  24. Seo, H., et al.: Differential pricing-based task offloading for delay-sensitive IoT applications in mobile edge computing system. IEEE Internet Things J. 9(19), 19116–19131 (2022)

    Article  Google Scholar 

  25. Wang, X., et al.: Decentralized scheduling and dynamic pricing for edge computing: a mean field game approach. IEEE/ACM Trans. Netw. 31(3), 965–978 (2023)

    Article  Google Scholar 

  26. Chen, S., et al.: Dynamic pricing for smart mobile edge computing: a reinforcement learning approach. IEEE Wirel. Commun. Lett. 10(4), 700–704 (2021)

    Article  Google Scholar 

  27. Chen, Y., et al.: Dynamic task offloading for internet of things in mobile edge computing via deep reinforcement learning. Int. J. Commun. Syst., e5154 (2022)

    Google Scholar 

  28. Xu, J., et al.: Online learning for offloading and Autoscaling in energy harvesting mobile edge computing. IEEE Trans. Cogn. Commun Netw. 3(3), 361–373 (2017)

    Article  Google Scholar 

  29. Qu, G., et al.: DMRO: a deep meta reinforcement learning-based task offloading framework for edge-cloud computing. IEEE Trans. Netw. Serv. Manage. 18(3), 3448–3459 (2021)

    Article  Google Scholar 

  30. Wang, J., et al.: Fast adaptive task offloading in edge computing based on meta reinforcement learning. IEEE Trans. Parallel Distrib. Syst. 32(1), 242–253 (2021)

    Article  Google Scholar 

  31. Yan, W., et al.: Survey on recent smart gateways for smart home: systems, technologies, and challenges. Trans. Emerg. Telecommun. Technol. 33(6), e4067 (2022)

    Article  MathSciNet  Google Scholar 

  32. Dabin, J.A., et al.: A statistical ultra-wideband indoor channel model and the effects of antenna directivity on path loss and multipath propagation. IEEE J. Sel. Areas Commun. 24(2), 752–758 (2006)

    Article  Google Scholar 

  33. Cai, J., et al.: Deep reinforcement learning-based multitask hybrid computing offloading for multiaccess edge computing. Int. J. Intell. Syst. 37(9), 6221–6243 (2022)

    Article  Google Scholar 

  34. Wang, W., et al.: Trade-off analysis of fine-grained power gating methods for functional units in a CPU. In: Symposium on Low-Power and High-Speed Chips - Proceedings for 2012 IEEE COOL. Chips. XV. (2012)

    Google Scholar 

  35. Chen, E., et al.: SaaSC: toward pay-as-you-go mode for software service transactions based on blockchain’s smart legal contracts. IEEE Trans. Serv., Comput. (2023)

    Google Scholar 

  36. Chargebee, what is pay as you go pricing model, on-line webpage (2022). https://www.chargebee.com/resources/glossaries/pay-as-you-go-pricing/

  37. Zhao, N., et al.: Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing. IEEE Trans. Wirel. Commun. 21(9), 6949–6960 (2022)

    Article  MathSciNet  Google Scholar 

  38. Van Hasselt, H., et al.: Deep reinforcement learning with double Q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, pp. 2094–2100 (2016)

    Google Scholar 

  39. Lai, G., et al.: Modeling long- and short-term temporal patterns with deep neural networks. In: 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018, pp. 95–104 (2018)

    Google Scholar 

  40. Liu, Z., et al.: Computation offloading and pricing in mobile edge computing based on Stackelberg game. Wirel. Netw. 27(7), 4795–4806 (2021)

    Article  Google Scholar 

  41. Li, F., et al.: Stackelberg game-based computation offloading in social and cognitive industrial internet of things. IEEE Trans. Industr. Inform. 16(8), 5444–5455 (2020)

    Article  Google Scholar 

  42. Liao, L., et al.: Online computation offloading with double reinforcement learning algorithm in mobile edge computing. J. Parallel Distrib. Comput. 171, 28–39 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Nature Science Foundation of China under grant number: T2350710232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingchu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Li, S., Qi, W. (2024). Dynamic Offloading Based on Meta Deep Reinforcement Learning and Load Prediction in Smart Home Edge Computing. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-54521-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54521-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54520-7

  • Online ISBN: 978-3-031-54521-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics