Skip to main content

EMF-Former: An Efficient and Memory-Friendly Transformer for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15008))

  • 2010 Accesses

Abstract

Medical image segmentation is of significant importance for computer-aided diagnosis. In this task, methods based on Convolutional Neural Networks (CNNs) have shown good performance in extracting local features. However, they cannot capture global dependencies, which is crucial for medical image. On the other hand, Transformer-based methods can establish global dependencies through self-attention, providing a supplement to local convolution. However, the expensive matrix multiplication in the self-attention of a vanilla transformer and the memory usage is still a bottleneck. In this work, we propose a segmentation model named EMF-former. By combining DWConv, channel shuffle and PWConv, we design a Depthwise Separable Shuffled Convolution Module (DSPConv) to reduce the parameter count of convolutions. Additionally, we employ an efficient Vector Aggregation Attention (VAA) that substitutes key-value interactions with element-wise multiplication after broadcasting two vectors to reduce computational complexity. Moreover, we substitute the parallel multi-head attention module with the Serial Multi-Head Attention Module (S-MHA) to reduce feature redundancy and memory usage in multi-head attention. Combining the above modules, EMF-former could perform the medical image segmentation efficiently with fewer parameter counts, lower computational complexity and lower memory usage while preserving segmentation accuracy. We conduct experimental evaluations on ACDC and Hippocampus dataset, achieving mIOU values of 80.5% and 78.8%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 83.88
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 103.38
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, P., et al.: Mh unet: a multi-scale hierarchical based architecture for medical image segmentation. IEEE Access 9, 148384–148408 (2021)

    Article  Google Scholar 

  2. Antonelli, M., et al.: The medical segmentation decathlon. Nature Commun. 13(1), 4128 (2022)

    Article  Google Scholar 

  3. Bernard, O., et al.: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Cao, H., et al.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25066-8_9

  5. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  6. Chen, J., et al.: Run, don’t walk: Chasing higher flops for faster neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12021–12031 (2023)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Hatamizadeh, A., et al.: Unetr: transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  9. Huang, Z., et al.: Ccnet: Criss-cross attention for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 6896–6908 (2023)

    Article  Google Scholar 

  10. Jiao, J., et al.: Dilateformer: multi-scale dilated transformer for visual recognition. IEEE Trans. Multimed. (2023)

    Google Scholar 

  11. Lei, T., Sun, R., Wang, X., Wang, Y., He, X., Nandi, A.: Cit-net: convolutional neural networks hand in hand with vision transformers for medical image segmentation. arXiv preprint arXiv:2306.03373 (2023)

  12. Li, J., Tu, Z., Yang, B., Lyu, M.R., Zhang, T.: Multi-head attention with disagreement regularization. arXiv preprint arXiv:1810.10183 (2018)

  13. Li, X., Jiang, Y., Li, M., Yin, S.: Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans. Industr. Inf. 17(3), 1958–1967 (2020)

    Article  Google Scholar 

  14. Li, Y., et al.: Efficientformer: vision transformers at mobilenet speed. Adv. Neural. Inf. Process. Syst. 35, 12934–12949 (2022)

    Google Scholar 

  15. Lin, X., Yu, L., Cheng, K.T., Yan, Z.: Batformer: towards boundary-aware lightweight transformer for efficient medical image segmentation. IEEE J. Biomed. Health Inf. (2023)

    Google Scholar 

  16. Lin, Y., Fang, X., Zhang, D., Cheng, K., Chen, H.: Boosting convolution with efficient mlp-permutation for volumetric medical image segmentation (2023)

    Google Scholar 

  17. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  18. Lou, A., Guan, S., Loew, M.: Dc-unet: rethinking the u-net architecture with dual channel efficient cnn for medical image segmentation. In: Medical Imaging 2021: Image Processing, vol. 11596, pp. 758–768. SPIE (2021)

    Google Scholar 

  19. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  20. Pan, J., et al.: Edgevits: competing light-weight cnns on mobile devices with vision transformers. In: European Conference on Computer Vision. pp. 294–311. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20083-0_18

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Ruan, J., Xie, M., Gao, J., Liu, T., Fu, Y.: Ege-unet: an efficient group enhanced unet for skin lesion segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 481–490. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_46

  23. Shaker, A., Maaz, M., Rasheed, H., Khan, S., Yang, M.H., Khan, F.S.: Swiftformer: efficient additive attention for transformer-based real-time mobile vision applications. arXiv preprint arXiv:2303.15446 (2023)

  24. Wang, W., et al.: Pvt v2: improved baselines with pyramid vision transformer. Comput. Vis. Media 8(3), 415–424 (2022)

    Article  Google Scholar 

  25. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  26. Yuan, L., et al.: Tokens-to-token vit: Training vision transformers from scratch on imagenet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 558–567 (2021)

    Google Scholar 

  27. Zhang, Q., Yang, Y.B.: Rest: An efficient transformer for visual recognition. Adv. Neural. Inf. Process. Syst. 34, 15475–15485 (2021)

    Google Scholar 

  28. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnformer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

  29. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Quan .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

We have no competing interests relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1584 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, Z., Quan, H., Lu, Y. (2024). EMF-Former: An Efficient and Memory-Friendly Transformer for Medical Image Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics