Abstract
Implicit neural representations (INRs) recently achieved great success in image representation and compression, offering high visual quality and fast rendering speeds with 10–1000 FPS, assuming sufficient GPU resources are available. However, this requirement often hinders their use on low-end devices with limited memory. In response, we propose a groundbreaking paradigm of image representation and compression by 2D Gaussian Splatting, named GaussianImage. We first introduce 2D Gaussian to represent the image, where each Gaussian has 8 parameters including position, covariance and color. Subsequently, we unveil a novel rendering algorithm based on accumulated summation. Remarkably, our method with a minimum of 3\(\times \) lower GPU memory usage and 5\(\times \) faster fitting time not only rivals INRs (e.g., WIRE, I-NGP) in representation performance, but also delivers a faster rendering speed of 1500–2000 FPS regardless of parameter size. Furthermore, we integrate existing vector quantization technique to build an image codec. Experimental results demonstrate that our codec attains rate-distortion performance comparable to compression-based INRs such as COIN and COIN++, while facilitating decoding speeds of approximately 2000 FPS. Additionally, preliminary proof of concept shows that our codec surpasses COIN and COIN++ in performance when using partial bits-back coding. Code is available at https://github.com/Xinjie-Q/GaussianImage.
X. Zhang and X. Ge—Equal Contribution.
This work was done when Xinjie Zhang and Xingtong Ge interned at SenseTime Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kodak lossless true color image suite (1999). https://r0k.us/graphics/kodak/
Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017)
Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)
Ballé, J., Laparra, V., Simoncelli, E.P.: Density modeling of images using a generalized normalization transformation (2015). arXiv preprint arXiv:1511.06281
Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: International Conference on Learning Representations (2017)
Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: International Conference on Learning Representations (2018)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Bellard, F.: BPG image format (2014). https://bellard.org/bpg/
Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., Kwak, N.: LSQ+: improving low-bit quantization through learnable offsets and better initialization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 696–697 (2020)
Chen, G., Wang, W.: A survey on 3D gaussian splatting (2024). arXiv preprint arXiv:2401.03890
Chen, H., Gwilliam, M., Lim, S.N., Shrivastava, A.: HNeRV: a hybrid neural representation for videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10270–10279 (2023)
Chen, H., et al.: NeRV: neural representations for videos. Adv. Neural. Inf. Process. Syst. 34, 21557–21568 (2021)
Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8628–8638 (2021)
Chen, Y., et al.: GaussianEditor: swift and controllable 3D editing with gaussian splatting. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Chen, Z., et al.: https://github.com/oppo-us-research/NeuRBF
Chen, Z., et al.: NeuRBF: a neural fields representation with adaptive radial basis functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4182–4194 (2023)
Chen, Z., Wang, F., Liu, H.: Text-to-3D using gaussian splatting. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Cheng, Z., Sun, H., Takeuchi, M., Katto, J.: Learned image compression with discretized gaussian mixture likelihoods and attention modules. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7939–7948 (2020)
Dupont, E., Loya, H., Alizadeh, M., Golinski, A., Teh, Y., Doucet, A.: COIN++: neural compression across modalities. Trans. Mach. Learn. Res. 2022(11) (2022)
Dupont, E., Golinski, A., Alizadeh, M., Teh, Y.W., Doucet, A.: COIN: compression with implicit neural representations. In: Neural Compression: From Information Theory to Applications–Workshop@ ICLR 2021 (2021)
Fathony, R., Sahu, A.K., Willmott, D., Kolter, J.Z.: Multiplicative filter networks. In: International Conference on Learning Representations (2020)
Gray, R.: Vector quantization. IEEE ASSP Mag. 1(2), 4–29 (1984)
Guo, Z., Flamich, G., He, J., Chen, Z., Hernández-Lobato, J.M.: Compression with bayesian implicit neural representations. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
He, D., Yang, Z., Peng, W., Ma, R., Qin, H., Wang, Y.: ELIC: efficient learned image compression with unevenly grouped space-channel contextual adaptive coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5718–5727 (2022)
Heil, C.E., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)
Higham, N.J.: Cholesky factorization. Wiley Interdisc. Rev. Comput. Stat. 1(2), 251–254 (2009)
Huang, H., Li, L., Cheng, H., Yeung, S.K.: Photo-SLAM: real-time simultaneous localization and photorealistic mapping for monocular, stereo, and RGB-D cameras (2023). arXiv preprint arXiv:2311.16728
Keetha, N.,et al.: SplaTAM: splat, track & map 3D gaussians for dense RGB-D SLAM (2023). arXiv preprint arXiv:2312.02126
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 139–1 (2023)
Koyuncu, A.B., Gao, H., Boev, A., Gaikov, G., Alshina, E., Steinbach, E.: Contextformer: A Transformer with Spatio-Channel Attention for Context Modeling in Learned Image Compression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13679, pp. 447–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_26
Kunze, J., Severo, D., Zani, G., van de Meent, J.W., Townsend, J.: Entropy coding of unordered data structures. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=afQuNt3Ruh
Ladune, T., Philippe, P., Henry, F., Clare, G., Leguay, T.: COOL-CHIC: coordinate-based low complexity hierarchical image Codec. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13515–13522 (2023)
Leguay, T., Ladune, T., Philippe, P., Clare, G., Henry, F., Déforges, O.: Low-complexity overfitted neural image codec. In: 2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. IEEE (2023)
Li, Z., Wang, M., Pi, H., Xu, K., Mei, J., Liu, Y.: E-NeRV: expedite neural video representation with disentangled spatial-temporal context. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13695. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_16
Liu, J., Sun, H., Katto, J.: Learned image compression with mixed transformer-CNN architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14388–14397 (2023)
Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D gaussians: tracking by persistent dynamic view synthesis (2023). arXiv preprint arXiv:2308.09713
Ma, C., Yu, P., Lu, J., Zhou, J.: Recovering realistic details for magnification-arbitrary image super-resolution. IEEE Trans. Image Process. 31, 3669–3683 (2022)
Martel, J.N., Lindell, D.B., Lin, C.Z., Chan, E.R., Monteiro, M., Wetzstein, G.: ACORN: adaptive coordinate networks for neural scene representation. ACM Trans. Graph. (TOG) 40(4), 1–13 (2021)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pp. 405–421. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Minnen, D., Ballé, J., Toderici, G.D.: Joint autoregressive and hierarchical priors for learned image compression. In: Advances in Neural Information Processing Systems (2018)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (TOG) 41(4), 1–15 (2022)
Nguyen, Q.H., Beksi, W.J.: Single image super-resolution via a dual interactive implicit neural network. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4936–4945 (2023)
Quan, Y., Yao, X., Ji, H.: Single image defocus deblurring via implicit neural inverse kernels. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12600–12610 (2023)
Ramasinghe, S., Lucey, S.: Beyond periodicity: towards a unifying framework for activations in coordinate-MLPs. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13693. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_9
Ryder, T., Zhang, C., Kang, N., Zhang, S.: Split hierarchical variational compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 386–395 (2022)
Saragadam, V., LeJeune, D., Tan, J., Balakrishnan, G., Veeraraghavan, A., Baraniuk, R.G.: WIRE: wavelet implicit neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18507–18516 (2023)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)
Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 18(5), 36–58 (2001)
Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8, 131–162 (2007)
Strümpler, Y., Postels, J., Yang, R., Gool, L.V., Tombari, F.: Implicit neural representations for image compression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13686, pp. 74–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_5
Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11358–11367 (2021)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)
Townsend, J., Bird, T., Barber, D.: Practical lossless compression with latent variables using bits back coding (2019). arXiv preprint arXiv:1901.04866
Wallace, G.K.: The JPEG still picture compression standard. Commun. ACM 34(4), 30–44 (1991)
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. vol. 2, pp. 1398–1402. IEEE (2003)
Wu, G., et al.: 4D gaussian splatting for real-time dynamic scene rendering (2023). arXiv preprint arXiv:2310.08528
Xie, X., Zhou, P., Li, H., Lin, Z., Shuicheng, Y.: Adan: adaptive nesterov momentum algorithm for faster optimizing deep models. In: Has it Trained Yet? NeurIPS 2022 Workshop (2022)
Xu, D., Wang, P., Jiang, Y., Fan, Z., Wang, Z.: Signal processing for implicit neural representations. Adv. Neural. Inf. Process. Syst. 35, 13404–13418 (2022)
Xu, Q., et al.: Point-NeRF: point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)
Xu, W., Jiao, J.: Revisiting implicit neural representations in low-level vision. In: International Conference on Learning Representations Workshop (2023)
Yan, C., et al.: GS-SLAM: dense visual slam with 3D gaussian splatting (2023). arXiv preprint arXiv:2311.11700
Yan, Y., et al.: Street gaussians for modeling dynamic urban scenes (2024). arXiv preprint arXiv:2401.01339
Yang, Z., Yang, H., Pan, Z., Zhu, X., Zhang, L.: Real-time photorealistic dynamic scene representation and rendering with 4D gaussian splatting (2023). arXiv preprint arXiv:2310.10642
Ye, V., Turkulainen, M., the Nerfstudio team: gsplat. https://github.com/nerfstudio-project/gsplat
Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., Tagliasacchi, M.: SoundStream: an end-to-end neural audio codec. IEEE/ACM Trans. Audio Speech Lang. Process. 30, 495–507 (2021)
Zhang, X., et al.: Boosting neural representations for videos with a conditional decoder. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2024)
Zhou, X., Lin, Z., Shan, X., Wang, Y., Sun, D., Yang, M.H.: DrivingGaussian: composite gaussian splatting for surrounding dynamic autonomous driving scenes (2023). arXiv preprint arXiv:2312.07920
Zielonka, W., Bagautdinov, T., Saito, S., Zollhöfer, M., Thies, J., Romero, J.: Drivable 3D gaussian avatars (2023). arXiv preprint arXiv:2311.08581
Acknowledgments
This work was supported by the National Natural Science Fund of China (Project No. 42201461, 62102024, 62331014) and the General Research Fund (Project No. 16209622) from the Hong Kong Research Grants Council.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X. et al. (2025). GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15067. Springer, Cham. https://doi.org/10.1007/978-3-031-72673-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-72673-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72672-9
Online ISBN: 978-3-031-72673-6
eBook Packages: Computer ScienceComputer Science (R0)