Abstract
This paper enables high-fidelity, transferable NeRF editing by frequency decomposition. Recent NeRF editing pipelines lift 2D stylization results to 3D scenes while suffering from blurry results, and fail to capture detailed structures caused by the inconsistency between 2D editings. Our critical insight is that low-frequency components of images are more multiview-consistent after editing compared with their high-frequency parts. Moreover, the appearance style is mainly exhibited on the low-frequency components, and the content details especially reside in high-frequency parts. This motivates us to perform editing on low-frequency components, which results in high-fidelity edited scenes. In addition, the editing is performed in the low-frequency feature space, enabling stable intensity control and novel scene transfer. Comprehensive experiments conducted on photorealistic datasets demonstrate the superior performance of high-fidelity and transferable NeRF editing. The project page is at https://aigc3d.github.io/freditor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022)
Boss, M., Jampani, V., Braun, R., Liu, C., Barron, J.T., Lensch, H.P.A.: Neural-PIL: neural pre-integrated lighting for reflectance decomposition. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, Virtual, pp. 10691–10704 (2021). https://proceedings.neurips.cc/paper/2021/hash/58ae749f25eded36f486bc85feb3f0ab-Abstract.html
Brooks, T., Holynski, A., Efros, A.A.: InstructPix2Pix: learning to follow image editing instructions. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, 17–24 June 2023, pp. 18392–18402. IEEE (2023). https://doi.org/10.1109/CVPR52729.2023.01764
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), October 2021. https://doi.org/10.1109/iccv48922.2021.00951
Chen, Y., et al.: GaussianEditor: swift and controllable 3D editing with Gaussian splatting. CoRR abs/2311.14521 (2023). https://doi.org/10.48550/ARXIV.2311.14521
Chiang, P., Tsai, M., Tseng, H., Lai, W., Chiu, W.: Stylizing 3D scene via implicit representation and hypernetwork. In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, 3–8 January 2022, pp. 215–224. IEEE (2022). https://doi.org/10.1109/WACV51458.2022.00029
Duan, H., Wang, M., Li, Y., Yang, Y.: PaintNeSF: artistic creation of stylized scenes with vectorized 3D strokes. CoRR abs/2311.15637 (2023). https://doi.org/10.48550/ARXIV.2311.15637
Fan, Z., Jiang, Y., Wang, P., Gong, X., Xu, D., Wang, Z.: Unified implicit neural stylization. In: Avidan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XV. LNCS, vol. 13675, pp. 636–654. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_37
Fang, J., Wang, J., Zhang, X., Xie, L., Tian, Q.: GaussianEditor: editing 3D Gaussians delicately with text instructions. CoRR abs/2311.16037 (2023). https://doi.org/10.48550/ARXIV.2311.16037
Feng, Y., Shang, Y., Li, X., Shao, T., Jiang, C., Yang, Y.: PIE-NeRF: physics-based interactive elastodynamics with NeRF. CoRR abs/2311.13099 (2023). https://doi.org/10.48550/ARXIV.2311.13099
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. https://doi.org/10.1109/cvpr.2016.265
Haque, A., Tancik, M., Efros, A., Holynski, A., Kanazawa, A.: Instruct-NeRF2NeRF: editing 3D scenes with instructions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)
Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1998, January 1998. https://doi.org/10.1145/280814.280951
Huang, H.P., Tseng, H.Y., Saini, S., Singh, M., Yang, M.H.: Learning to stylize novel views. In: International Conference on Computer Vision, January 2021
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), October 2017. https://doi.org/10.1109/iccv.2017.167
Huang, Y., He, Y., Yuan, Y., Lai, Y., Gao, L.: StylizedNeRF: consistent 3D scene stylization as stylized nerf via 2D-3D mutual learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 18321–18331. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.01780
Hwang, S., Hyung, J., Kim, D., Kim, M., Choo, J.: FaceClipNeRF: text-driven 3D face manipulation using deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, 1–6 October 2023, pp. 3446–3456. IEEE (2023). https://doi.org/10.1109/ICCV51070.2023.00321
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part II. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing NeRF for editing via feature field distillation. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/93f250215e4889119807b6fac3a57aec-Abstract-Conference.html
Koo, J., Park, C., Sung, M.: Posterior distillation sampling. CoRR abs/2311.13831 (2023). https://doi.org/10.48550/ARXIV.2311.13831
Kuang, Z., Luan, F., Bi, S., Shu, Z., Wetzstein, G., Sunkavalli, K.: PaletteNeRF: palette-based appearance editing of neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, 17–24 June 2023, pp. 20691–20700. IEEE (2023). https://doi.org/10.1109/CVPR52729.2023.01982
Li, B., Weinberger, K.Q., Belongie, S.J., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. In: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022. OpenReview.net (2022). https://openreview.net/forum?id=RriDjddCLN
Li, J., et al.: InstructPix2NeRF: instructed 3D portrait editing from a single image. CoRR abs/2311.02826 (2023). https://doi.org/10.48550/ARXIV.2311.02826
Li, Y., Lin, Z.H., Forsyth, D., Huang, J.B., Wang, S.: ClimateNeRF: extreme weather synthesis in neural radiance field. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)
Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: a Laplacian pyramid translation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9392–9400 (2021)
Liu, K., et al.: StyleRF: zero-shot 3D style transfer of neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, 17–24 June 2023, pp. 8338–8348. IEEE (2023). https://doi.org/10.1109/CVPR52729.2023.00806
Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional radiance fields. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), October 2021. https://doi.org/10.1109/iccv48922.2021.00572
Mikaeili, A., Perel, O., Safaee, M., Cohen-Or, D., Mahdavi-Amiri, A.: SKED: sketch-guided text-based 3D editing. In: IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, 1–6 October 2023, pp. 14561–14573. IEEE (2023). https://doi.org/10.1109/ICCV51070.2023.01343
Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022. https://doi.org/10.1109/cvpr52688.2022.01571
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J. (eds.) Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part I. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21, 4695–4708 (2012). https://doi.org/10.1109/tip.2012.2214050
Mu, F., Wang, J., Wu, Y., Li, Y.: 3D photo stylization: learning to generate stylized novel views from a single image. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022. https://doi.org/10.1109/cvpr52688.2022.01579
Munkberg, J., et al.: Extracting triangular 3D models, materials, and lighting from images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8280–8290, June 2022
Nguyen-Phuoc, T., Liu, F., Xiao, L.: SNeRF: stylized neural implicit representations for 3D scenes. ACM Trans. Graph. 41(4), 142:1–142:11 (2022). https://doi.org/10.1145/3528223.3530107
Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 5436–5445. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00548, https://openaccess.thecvf.com/content_CVPR_2020/html/Niklaus_Softmax_Splatting_for_Video_Frame_Interpolation_CVPR_2020_paper.html
Ost, J., Mannan, F., Thuerey, N., Knodt, J., Heide, F.: Neural scene graphs for dynamic scenes. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021. https://doi.org/10.1109/cvpr46437.2021.00288
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18–24 July 2021, Virtual Event. Proceedings of Machine Learning Research, vol. 139, pp. 8748–8763. PMLR (2021). http://proceedings.mlr.press/v139/radford21a.html
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556
Song, H., Choi, S., Do, H., Lee, C., Kim, T.: Blending-NeRF: text-driven localized editing in neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, 1–6 October 2023, pp. 14337–14347. IEEE (2023). https://doi.org/10.1109/ICCV51070.2023.01323
Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021. https://doi.org/10.1109/cvpr46437.2021.00741
Tancik, M., et al.: NeRFStudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH 2023 (2023)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow (extended abstract). In: Zhou, Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada, 19–27 August 2021, pp. 4839–4843. ijcai.org (2021). https://doi.org/10.24963/IJCAI.2021/662
Tschernezki, V., Laina, I., Larlus, D., Vedaldi, A.: Neural feature fusion fields: 3D distillation of self-supervised 2D image representations. In: International Conference on 3D Vision, 3DV 2022, Prague, Czech Republic, 12–16 September 2022, pp. 443–453. IEEE (2022). https://doi.org/10.1109/3DV57658.2022.00056
Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022. https://doi.org/10.1109/cvpr52688.2022.00541
Wang, C., Chai, M., He, M., Chen, D., Liao, J.: CLIP-NeRF: text-and-image driven manipulation of neural radiance fields. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022. https://doi.org/10.1109/cvpr52688.2022.00381
Wang, C., Jiang, R., Chai, M., He, M., Chen, D., Liao, J.: NeRF-Art: text-driven neural radiance fields stylization. IEEE Trans. Vis. Comput. Graph., 1–15 (2023). https://doi.org/10.1109/TVCG.2023.3283400
Xie, T., et al.: PhysGaussian: physics-integrated 3D Gaussians for generative dynamics. CoRR abs/2311.12198 (2023). https://doi.org/10.48550/ARXIV.2311.12198
Yu, H., Guibas, L.J., Wu, J.: Unsupervised discovery of object radiance fields. In: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022. OpenReview.net (2022). https://openreview.net/forum?id=rwE8SshAlxw
Yuan, Y., Sun, Y., Lai, Y., Ma, Y., Jia, R., Gao, L.: NeRF-editing: geometry editing of neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 18332–18343. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.01781
Zhang, K., et al.: ARF: artistic radiance fields. In: Avidan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXXI. LNCS, vol. 13691, pp. 717–733. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_41
Zhang, K., et al.: ARF: artistic radiance fields (2022)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018. https://doi.org/10.1109/cvpr.2018.00068
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
He, Y., Yuan, W., Zhu, S., Dong, Z., Bo, L., Huang, Q. (2025). Freditor: High-Fidelity and Transferable NeRF Editing by Frequency Decomposition. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15099. Springer, Cham. https://doi.org/10.1007/978-3-031-72940-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-72940-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72939-3
Online ISBN: 978-3-031-72940-9
eBook Packages: Computer ScienceComputer Science (R0)