Skip to main content

MSSF: A Multi-scale Siamese Flow Architecture for Multi-texture Class Anomaly Detection

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15317))

Included in the following conference series:

  • 210 Accesses

Abstract

Multi-class anomaly detection has been a promising research area. However, most methods focus on increasing backbone parameters or the depth of the network. This study uses multi-texture anomaly detection as an example to validate a lightweight flow-based pipeline called Multi-Scale Siamese Flow (MSSF) with a Multi-level Feature Fusion (MLFF) to fully use extracted shallow and deep features. Besides, a Mixed anomalies synthesis (MAS) method is incorporated into the MSSF and trains our pipeline in a self-supervised manner by designing a novel training loss combining negative log-likelihood with a changeable self-supervised hindering loss. Extensive experiments on real-world texture subsets or texture datasets, including MVTec-AD, KSDD2, MT, and AITEX, indicate the effectiveness of our MSSF. The inference speed surpasses the second fastest method, UniAD, about 2 times. Compared with other cutting-edge methods, the MSSF achieves an effective balance between performance and speed.

J. Zhang—This work was supported by Robotics Institute of Zhejiang University under Grant K12201.

Y. Chen and Z. Hu—Equal first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 111.27
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/gudovskiy/cflow-ad.

  2. 2.

    https://github.com/xcyao00/PMAD.

  3. 3.

    https://github.com/marco-rudolph/cs-flow.

  4. 4.

    https://github.com/zhiyuanyou/UniAD.

References

  1. Aota, T., Tong, L.T.T., Okatani, T.: Zero-shot versus many-shot: unsupervised texture anomaly detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5564–5572 (2023)

    Google Scholar 

  2. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  3. Božič, J., Tabernik, D., Skočaj, D.: Mixed supervision for surface-defect detection: from weakly to fully supervised learning. Comput. Ind. 129, 103459 (2021)

    Article  Google Scholar 

  4. Cao, Y., Xu, X., Liu, Z., Shen, W.: Collaborative discrepancy optimization for reliable image anomaly localization. IEEE Trans. Ind. Inf. (2023)

    Google Scholar 

  5. Chen, Y., Peng, H., Huang, L., Zhang, J., Jiang, W.: A novel mae-based self-supervised anomaly detection and localization method. IEEE Access 11, 127526–127538 (2023). https://doi.org/10.1109/ACCESS.2023.3332475

    Article  Google Scholar 

  6. Chen, Z., Yao, X., Liu, Z., Zhang, B., Zhang, C.: Ckt: cross-image knowledge transfer for texture anomaly detection. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 266–270. IEEE (2023)

    Google Scholar 

  7. Chiu, L.L., Lai, S.H.: Self-supervised normalizing flows for image anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2926–2935 (2023)

    Google Scholar 

  8. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3606–3613 (2014)

    Google Scholar 

  9. Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 98–107 (2022)

    Google Scholar 

  10. Huang, Y., Qiu, C., Yuan, K.: Surface defect saliency of magnetic tile. Vis. Comput. 36, 85–96 (2020)

    Article  Google Scholar 

  11. Mousakhan, A., Brox, T., Tayyub, J.: Anomaly detection with conditioned denoising diffusion models. arXiv preprint arXiv:2305.15956 (2023)

  12. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)

    Google Scholar 

  13. Rudolph, M., Wehrbein, T., Rosenhahn, B., Wandt, B.: Fully convolutional cross-scale-flows for image-based defect detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1088–1097 (2022)

    Google Scholar 

  14. Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14902–14912 (2021)

    Google Scholar 

  15. Shin, W., Lee, J., Lee, T., Lee, S., Yun, J.P.: Anomaly detection using score-based perturbation resilience. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23372–23382 (2023)

    Google Scholar 

  16. Silvestre-Blanes, J., Albero-Albero, T., Miralles, I., Pérez-Llorens, R., Moreno, J.: A public fabric database for defect detection methods and results. Autex Res. J. 19(4), 363–374 (2019)

    Article  Google Scholar 

  17. Tao, X., Adak, C., Chun, P.J., Yan, S., Liu, H.: Vitalnet: anomaly on industrial textured surfaces with hybrid transformer. IEEE Trans. Instrum. Meas. 72, 1–13 (2023)

    Google Scholar 

  18. Tao, X., Yan, S., Gong, X., Adak, C.: Learning multi-resolution features for unsupervised anomaly localization on industrial textured surfaces. IEEE Trans. Artif. Intell. (2022)

    Google Scholar 

  19. Yang, H., Zhu, H., Li, J., Chen, J., Yin, Z.: Multi-category decomposition editing network for the accurate visual inspection of texture defects. IEEE Trans. Autom. Sci. Eng. (2023)

    Google Scholar 

  20. Yang, Y., Mao, J., Wang, Y., Zhang, H., Zhou, X., Chen, Y.: Patch variational autoencoder-based industrial defect detection. In: 2022 13th Asian Control Conference (ASCC), pp. 674–677. IEEE (2022)

    Google Scholar 

  21. Yao, X., Zhang, C., Li, R., Sun, J., Liu, Z.: One-for-all: proposal masked cross-class anomaly detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 4792–4800 (2023)

    Google Scholar 

  22. You, Z., et al.: A unified model for multi-class anomaly detection. Adv. Neural. Inf. Process. Syst. 35, 4571–4584 (2022)

    Google Scholar 

  23. Yu, J., et al.: Fastflow: unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021)

  24. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  25. Zavrtanik, V., Kristan, M., Skočaj, D.: Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8330–8339 (2021)

    Google Scholar 

  26. Zhang, H., Wang, Z., Wu, Z., Jiang, Y.G.: Diffusionad: denoising diffusion for anomaly detection. arXiv preprint arXiv:2303.08730 (2023)

  27. Zhao, Y.: Omnial: a unified CNN framework for unsupervised anomaly localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3924–3933 (2023)

    Google Scholar 

  28. Zhou, Y., Xu, X., Song, J., Shen, F., Shen, H.T.: Msflow: multi-scale flow-based framework for unsupervised anomaly detection. arXiv preprint arXiv:2308.15300 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Hu, Z., Huang, L., Zhang, J. (2025). MSSF: A Multi-scale Siamese Flow Architecture for Multi-texture Class Anomaly Detection. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15317. Springer, Cham. https://doi.org/10.1007/978-3-031-78447-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78447-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78446-0

  • Online ISBN: 978-3-031-78447-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics