Abstract
Several domains, such as fuzzy logic programming, formal concept analysis and fuzzy relation equations, consider basic operators which need to have associated residuated implications. Adjoint triples are formed by operators satisfying weak properties, usefully used in these domains. This paper presents the comparison of these triples with other general operators considered in these frameworks.
Partially supported by the Spanish Science Ministry projects TIN2009-14562-C05-03 and TIN2012-39353-C04-04, and by Junta de Andalucía project P09-FQM-5233.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms. Information Sciences 180(20), 3992–4005 (2010)
Bělohlávek, R.: Concept equations. Journal of Logic and Computation 14(3), 395–403 (2004)
Bělohlávek, R.: Sup-t-norm and inf-residuum are one type of relational product: Unifying framework and consequences. Fuzzy Sets and Systems 197, 45–58 (2012)
Benado, M.: Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier, II. Théorie des multistructures. Czechoslovak Mathematical Journal 5(80), 308–344 (1955)
Cordero, P., Gutiérrez, G., Martínez, J., de Guzmán, I.P.: A new algebraic tool for automatic theorem provers. Annals of Mathematics and Artificial Intelligence 42(4), 369–398 (2004)
Cornejo, M., Medina, J., Ramírez, E.: A comparative study of adjoint triples. Fuzzy Sets and Systems 211, 1–14 (2013)
Cornejo, M.E., Medina, J., Ramírez, E.: Implication triples versus adjoint triples. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 453–460. Springer, Heidelberg (2011)
De Baets, B., Fodor, J.: Residual operators of uninorms. Soft Computing 3(2), 89–100 (1999)
Della Stella, M.E., Guido, C.: Associativity, commutativity and symmetry in residuated structures, vol. 30(2), pp. 363–401. Springer Science+Business Media (2013)
Díaz, J.C., Medina, J.: Multi-adjoint relation equations: Definition, properties and solutions using concept lattices. Information Sciences 253, 100–109 (2013)
Díaz, J.C., Medina, J.: Solving systems of fuzzy relation equations by fuzzy property-oriented concepts. Information Sciences 222, 405–412 (2013)
Díaz-Moreno, J., Medina, J., Ojeda-Aciego, M.: On basic conditions to generate multi-adjoint concept lattices via galois connections. International Journal of General Systems 43(2), 149–161 (2014)
Dilworth, R.P., Ward, M.: Residuated lattices. Transactions of the American Mathematical Society 45, 335–354 (1939)
Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5(4), 411–427 (1997)
Guido, C., Toto, P.: Extended-order algebras. Journal of Applied Logic 6(4), 609–626 (2008)
Klement, E., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic (2000)
Lin, J.-L., Wu, Y.-K., Guu, S.-M.: On fuzzy relational equations and the covering problem. Information Sciences 181(14), 2951–2963 (2011)
Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices. Information Sciences 190, 95–106 (2012)
Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Fuzzy logic programming via multilattices. Fuzzy Sets and Systems 158, 674–688 (2007)
Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems 160(2), 130–144 (2009)
Medina, J., Ojeda-Aciego, M., Valverde, A., Vojtáš, P.: Towards biresiduated multi-adjoint logic programming. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA-TTIA 2003. LNCS (LNAI), vol. 3040, pp. 608–617. Springer, Heidelberg (2004)
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 351–364. Springer, Heidelberg (2001)
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)
Medina, J., Ruiz-Calviño, J.: Fuzzy formal concept analysis via multilattices: first prospects and results. In: The 9th International Conference on Concept Lattices and Their Applications (CLA 2012), pp. 69–79 (2012)
Morsi, N.N.: Propositional calculus under adjointness. Fuzzy Sets and Systems 132(1), 91–106 (2002)
Nguyen, H.T., Walker, E.: A First Course in Fuzzy Logic, 3rd edn. Chapman & Hall, Boca Ratón (2006)
Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debrecen 10, 69–81 (1963)
Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80(1), 111–120 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Cornejo, M.E., Medina, J., Ramírez-Poussa, E. (2014). Adjoint Triples and Residuated Aggregators. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-08852-5_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-08852-5_36
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08851-8
Online ISBN: 978-3-319-08852-5
eBook Packages: Computer ScienceComputer Science (R0)