Abstract
Viral marketing, marketing techniques that use pre-existing social networks, has experienced a significant encouragement in the last years. In this scope, Twitter is the most studied social network in viral marketing and the rumor spread is a widely researched problem. This paper contributes with a survey of research works which study rumor diffusion in Twitter. Moreover, the most useful aspects of these works to build new multi-agent based simulations dealing with this interesting and complex problem are discussed. The main four research lines in rumor dissemination found and discussed in this paper are: exploratory data analysis, rumor detection, epidemiological modeling, and multi-agent based social simulation. The survey shows that the reproducibility in the specialized literature has to be considerably improved. Finally, a free and open-source simulation tool implementing several of the models considered in this survey is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buchanan, M.: Economics: Meltdown modelling. Nature 460(7256), 680 (2009)
Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring user influence in twitter: the million follower fallacy. In: 4th International AAAI Conference on Weblogs and Social Media (ICWSM) (2010)
De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The Anatomy of a Scientific Rumor. Scientific Reports 3, October 2013
Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460(7256), 685–686 (2009)
Flentge, F., Polani, D., Uthmann, T.: Modelling the emergence of possession norms using memes. J. Artificial Societies and Social Simulation 4
Garcia-Valverde, T., Campuzano, F., Serrano, E., Villa, A., Botia, J.A.: Simulation of human behaviours for the validation of ambient intelligence services: A methodological approach. Journal of Ambient Intelligence and Smart Environments 4(3), 163–181 (2012)
Gatti, M.A.D.C., Appel, A.P., dos Santos, C.N., Pinhanez, C.S., Cavalin, P.R., Neto, S.B.: A simulation-based approach to analyze the information diffusion in microblogging online social network. In: Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World, WSC 2013, pp. 1685–1696. IEEE Press, Piscataway (2013)
Gupta, A., Lamba, H., Kumaraguru, P.: \({\$}\)1.00 per RT #BostonMarathon #PrayForBoston: Analyzing fake content on twitter, San Francisco, CA, September 2013
Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22Nd International Conference on World Wide Web Companion, WWW 2013 Companion, pp. 729–736. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2013)
Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42, 599–653 (2000)
Jin, F., Dougherty, E., Saraf, P., Cao, Y., Ramakrishnan, N.: Epidemiological modeling of news and rumors on twitter. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, SNAKDD 2013, pp. 8:1–8:9. ACM, New York (2013)
Kostka, J., Oswald, Y.A., Wattenhofer, R.: Word of mouth: rumor dissemination in social networks. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 185–196. Springer, Heidelberg (2008)
Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Aspects of rumor spreading on a microblog network. In: Jatowt, A., Lim, E.-P., Ding, Y., Miura, A., Tezuka, T., Dias, G., Tanaka, K., Flanagin, A., Dai, B.T. (eds.) SocInfo 2013. LNCS, vol. 8238, pp. 299–308. Springer, Heidelberg (2013)
Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor propagation in online social media. In: Xiong, H., Karypis, G., Thuraisingham, B.M., Cook, D.J., Wu, X. (eds.) 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, December 7–10, 2013, pp. 1103–1108. IEEE Computer Society (2013)
Li, X., Mao, W., Zeng, D., Wang, F.-Y.: Agent-based social simulation and modeling in social computing. In: Yang, C.C., Chen, H., Chau, M., Chang, K., Lang, S.-D., Chen, P.S., Hsieh, R., Zeng, D., Wang, F.-Y., Carley, K.M., Mao, W., Zhan, J. (eds.) ISI Workshops 2008. LNCS, vol. 5075, pp. 401–412. Springer, Heidelberg (2008)
Liu, D., Chen, X.: Rumor propagation in online social networks like twitter - a simulation study. In: Proceedings of the 2011 Third International Conference on Multimedia Information Networking and Security, MINES 2011, pp. 278–282. IEEE Computer Society, Washington, DC (2011)
Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: Can we trust what we rt? In: Proceedings of the First Workshop on Social Media Analytics, SOMA 2010, pp. 71–79. ACM, New York (2010)
Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumour spreading in complex social networks. Physica A: Statistical Mechanics and its Applications 374(1), 457–470 (2007)
Qazvinian, V., Rosengren, E., Radev, D.R., Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, pp. 1589–1599. Association for Computational Linguistics, Stroudsburg (2011)
Rand, W., Rust, R.T.: Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing 28(3), 181–193 (2011)
Rolla, V.G., Curado, M.: A reinforcement learning-based routing for delay tolerant networks. Engineering Applications of Artificial Intelligence 26(10), 2243–2250 (2013)
Seo, E., Mohapatra, P., Abdelzaher, T.: Identifying rumors and their sources in social networks (2012)
Serrano, E., Moncada, P., Garijo, M., Iglesias, C.A.: Evaluating social choice techniques into intelligent environments by agent based social simulation. Information Sciences 286, 102–124 (2014)
Serrano, E., Poveda, G., Garijo, M.: Towards a holistic framework for the evaluation of emergency plans in indoor environments. Sensors 14(3), 4513–4535 (2014)
Serrano, E., Rovatsos, M., Bota, J.A.: Data mining agent conversations: A qualitative approach to multiagent systems analysis. Information Sciences 230, 132–146 (2013)
Serrano, E., Rovatsos, M., Botia, J.: A qualitative reputation system for multiagent systems with protocol-based communication. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, vol. 1, pp. 307–314. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2012)
Shah, D., Zaman, T.: Rumors in a network: Who’s the culprit? IEEE Transactions on Information Theory 57(8), 5163–5181 (2011)
Shamshirband, S., Anuar, N.B., Kiah, M.L.M., Patel, A.: An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique. Engineering Applications of Artificial Intelligence 26(9), 2105–2127 (2013)
Starbird, K., Maddock, J., Orand, M., Achterman, P., Mason, R.M.: Rumors, false flags, and digital vigilantes: Misinformation on twitter after the 2013 boston marathon bombing. In: iConference 2014 Proceedings, pp. 654–662 (2014)
Tisue, S., Wilensky, U.: NetLogo: A Simple Environment for Modeling Complexity (2004)
Tripathy, R.M., Bagchi, A., Mehta, S.: A study of rumor control strategies on social networks. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1817–1820. ACM, New York (2010)
Valecha, R., Oh, O., Rao, H.R.: An exploration of collaboration over time in collective crisis response during the haiti 2010 earthquake. In: Baskerville, R., Chau, M. (eds.) Proceedings of the International Conference on Information Systems, ICIS 2013, Milano, Italy, December 15–18, 2013. Association for Information Systems (2013)
Weng, L., Menczer, F., Ahn, Y.-Y.: Virality prediction and community structure in social networks. Scientific Reports 3, August 2013
Yang, S.Y., Liu, A., Mo, S.Y.K.: Twitter financial community modeling using agent based simulation. SSRN scholarly paper, Rochester, NY. IEEE Computational Intelligence in Financial Engineering and Economics, London (2013)
Zhao, L., Cui, H., Qiu, X., Wang, X., Wang, J.: \(\{\)SIR\(\}\) rumor spreading model in the new media age. Physica A: Statistical Mechanics and its Applications 392(4), 995–1003 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Serrano, E., Iglesias, C.A., Garijo, M. (2015). A Survey of Twitter Rumor Spreading Simulations. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9329. Springer, Cham. https://doi.org/10.1007/978-3-319-24069-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-24069-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24068-8
Online ISBN: 978-3-319-24069-5
eBook Packages: Computer ScienceComputer Science (R0)