Skip to main content

Mining Data from Coal Mines: IJCRS’15 Data Challenge

  • Conference paper
  • First Online:
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Abstract

We summarize the data mining competition associated with IJCRS’15 conference – IJCRS’15 Data Challenge: Mining Data from Coal Mines, organized at Knowledge Pit web platform. The topic of this competition was related to the problem of active safety monitoring in underground corridors. In particular, the task was to design an efficient method of predicting dangerous concentrations of methane in longwalls of a Polish coal mine. We describe the scope and motivation for the competition. We also report the course of the contest and briefly discuss a few of the most interesting solutions submitted by participants. Finally, we reveal our plans for the future research within this important subject.

Partially supported by the Polish National Science Centre – grant 2012/05/B/ST6/03215 and by the Polish National Centre for Research and Development (NCBiR) – grant PBS2/B9/20/2013 in frame of the Applied Research Programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://knowledgepit.fedcsis.org.

  2. 2.

    http://pti.org.pl/English-Version.

  3. 3.

    https://knowledgepit.fedcsis.org/contest/view.php?id=83.

  4. 4.

    https://knowledgepit.fedcsis.org/contest/view.php?id=109.

  5. 5.

    http://www.ibemag.pl/index.php?l=ang.

References

  1. Kozielski, M., Skowron, A., Wróbel, Ł., Sikora, M.: Regression rule learning for methane forecasting in coal mines. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015, pp. 495–504. Springer, Cham (2015)

    Chapter  Google Scholar 

  2. Krasuski, A., Jankowski, A., Skowron, A., Ślęzak, D.: From sensory data to decision making: a perspective on supporting a fire commander. In: Proceedings of WI-IAT 2013 Workshops, pp. 229–236. IEEE (2013)

    Google Scholar 

  3. Grzegorowski, M., Stawicki, S.: Window-based feature extraction framework for multi-sensor data: a posture recognition case study. In Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of FedCSIS 2015. IEEE (2015)

    Google Scholar 

  4. Kabiesz, J., Sikora, B., Sikora, M., Wróbel, Ł.: Application of rule-based models for seismic hazard prediction in coal mines. Acta Montanist. Slovaca 18(4), 262–277 (2013)

    Google Scholar 

  5. Janusz, A., xc, A., Stawicki, S., Rosiak, M., Ślęzak, D., Nguyen, H.S.: Key risk factors for polish state fire service: a data mining competition at knowledge pit. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M., (eds.) Proceedings of FedCSIS 2014, pp. 345–354. IEEE (2014)

    Google Scholar 

  6. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008)

    Google Scholar 

  7. Boullé, M.: Tagging fireworkers activities from body sensors under distribution drift. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of FedCSIS 2015. IEEE (2015)

    Google Scholar 

  8. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grzymała-Busse, J.W.: A new version of the rule induction system LERS. fundamenta Informaticae 31(1), 27–39 (1997)

    Article  MATH  Google Scholar 

  10. Nguyen, H.S.: On efficient handling of continuous attributes in large data bases. Fundamenta Informaticae 48(1), 61–81 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Janusz, A.: Algorithms for similarity relation learning from high dimensional data. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XVII. LNCS, vol. 8375, pp. 174–292. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Ślęzak, D., Benítez, J.M.: Implementing algorithms of rough set theory and fuzzy rough set theory in the R package ‘roughsets’. Inf. Sci. 287, 68–89 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Janusz .

Editor information

Editors and Affiliations

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Janusz, A. et al. (2015). Mining Data from Coal Mines: IJCRS’15 Data Challenge. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science(), vol 9437. Springer, Cham. https://doi.org/10.1007/978-3-319-25783-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25783-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25782-2

  • Online ISBN: 978-3-319-25783-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics