Abstract
We summarize the data mining competition associated with IJCRS’15 conference – IJCRS’15 Data Challenge: Mining Data from Coal Mines, organized at Knowledge Pit web platform. The topic of this competition was related to the problem of active safety monitoring in underground corridors. In particular, the task was to design an efficient method of predicting dangerous concentrations of methane in longwalls of a Polish coal mine. We describe the scope and motivation for the competition. We also report the course of the contest and briefly discuss a few of the most interesting solutions submitted by participants. Finally, we reveal our plans for the future research within this important subject.
Partially supported by the Polish National Science Centre – grant 2012/05/B/ST6/03215 and by the Polish National Centre for Research and Development (NCBiR) – grant PBS2/B9/20/2013 in frame of the Applied Research Programs.
Similar content being viewed by others
References
Kozielski, M., Skowron, A., Wróbel, Ł., Sikora, M.: Regression rule learning for methane forecasting in coal mines. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015, pp. 495–504. Springer, Cham (2015)
Krasuski, A., Jankowski, A., Skowron, A., Ślęzak, D.: From sensory data to decision making: a perspective on supporting a fire commander. In: Proceedings of WI-IAT 2013 Workshops, pp. 229–236. IEEE (2013)
Grzegorowski, M., Stawicki, S.: Window-based feature extraction framework for multi-sensor data: a posture recognition case study. In Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of FedCSIS 2015. IEEE (2015)
Kabiesz, J., Sikora, B., Sikora, M., Wróbel, Ł.: Application of rule-based models for seismic hazard prediction in coal mines. Acta Montanist. Slovaca 18(4), 262–277 (2013)
Janusz, A., xc, A., Stawicki, S., Rosiak, M., Ślęzak, D., Nguyen, H.S.: Key risk factors for polish state fire service: a data mining competition at knowledge pit. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M., (eds.) Proceedings of FedCSIS 2014, pp. 345–354. IEEE (2014)
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008)
Boullé, M.: Tagging fireworkers activities from body sensors under distribution drift. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of FedCSIS 2015. IEEE (2015)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
Grzymała-Busse, J.W.: A new version of the rule induction system LERS. fundamenta Informaticae 31(1), 27–39 (1997)
Nguyen, H.S.: On efficient handling of continuous attributes in large data bases. Fundamenta Informaticae 48(1), 61–81 (2001)
Janusz, A.: Algorithms for similarity relation learning from high dimensional data. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XVII. LNCS, vol. 8375, pp. 174–292. Springer, Heidelberg (2014)
Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Ślęzak, D., Benítez, J.M.: Implementing algorithms of rough set theory and fuzzy rough set theory in the R package ‘roughsets’. Inf. Sci. 287, 68–89 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Janusz, A. et al. (2015). Mining Data from Coal Mines: IJCRS’15 Data Challenge. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science(), vol 9437. Springer, Cham. https://doi.org/10.1007/978-3-319-25783-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-25783-9_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25782-2
Online ISBN: 978-3-319-25783-9
eBook Packages: Computer ScienceComputer Science (R0)