Abstract
We present and evaluate a large-scale malware detection system integrating machine learning with expert reviewers, treating reviewers as a limited labeling resource. We demonstrate that even in small numbers, reviewers can vastly improve the system’s ability to keep pace with evolving threats. We conduct our evaluation on a sample of VirusTotal submissions spanning 2.5 years and containing 1.1 million binaries with 778 GB of raw feature data. Without reviewer assistance, we achieve 72 % detection at a 0.5 % false positive rate, performing comparable to the best vendors on VirusTotal. Given a budget of 80 accurate reviews daily, we improve detection to 89 % and are able to detect 42 % of malicious binaries undetected upon initial submission to VirusTotal. Additionally, we identify a previously unnoticed temporal inconsistency in the labeling of training datasets. We compare the impact of training labels obtained at the same time training data is first seen with training labels obtained months later. We find that using training labels obtained well after samples appear, and thus unavailable in practice for current training data, inflates measured detection by almost 20 % points. We release our cluster-based implementation, as well as a list of all hashes in our evaluation and 3 % of our entire dataset.
B. Miller and G. Yiu—Primarily contributed while at UC Berkeley.
R. Bachwani—Primarily contributed while at Intel.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In particular, we include the following vendors: AVG, Antiy-AVL, Avast, BitDefender, CAT-QuickHeal, ClamAV, Comodo, ESET-NOD32, Emsisoft, F-Prot, Fortinet, GData, Ikarus, Jiangmin, K7AntiVirus, Kaspersky, McAfee, McAfee-GW-Edition, Microsoft, Norman, Panda, SUPERAntiSpyware, Sophos, Symantec, TheHacker, TotalDefense, TrendMicro, TrendMicro-HouseCall, VBA32, VIPRE, ViRobot and nProtect.
References
ClamAV PUA, 14 November 2014. http://www.clamav.net/doc/pua.html
PEiD, 14 November 2014. http://woodmann.com/BobSoft/Pages/Programs/PEiD
The Cuckoo Sandbox, 14 November 2014. http://www.cuckoosandbox.org
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: effective and explainable detection of android malware in your pocket. In: NDSS (2014)
Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-scale detection of malicious web pages. In: WWW (2011)
Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: triage for market-scale mobile malware analysis. In: ACM WiSec (2013)
Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press, Cambridge (2010)
Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: fast and precise in-browser javascript malware detection. In: Usenix Security (2011)
Damballa: State of Infections Report: Q4 2014. Technical report, Damballa (2015)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)
Kantchelian, A., Afroz, S., Huang, L., Islam, A.C., Miller, B., Tschantz, M.C., Greenstadt, R., Joseph, A.D., Tygar, J.D.: Approaches to adversarial drift. In: ACM AISec (2013)
Karanth, S., Laxman, S., Naldurg, P., Venkatesan, R., Lambert, J., Shin, J.: ZDVUE: prioritization of javascript attacks to discover new vulnerabilities. In: ACM AISec (2011)
Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)
McAfee Labs: McAfee Labs Threats Report, August 2014
Miller, B.: Scalable Platform for Malicious Content Detection Integrating Machine Learning and Manual Review. Ph.D. thesis, UC Berkeley (2015)
Nissim, N., Cohen, A., Moskovitch, R., Shabtai, A., Edry, M., Bar-Ad, O., Elovici, Y.: ALPD: active learning framework for enhancing the detection of malicious pdf files. In: IEEE JISIC, September 2014
Nissim, N., Moskovitch, R., Rokach, L., Elovici, Y.: Novel active learning methods for enhanced pc malware detection in windows os. J. Expert Syst. Appl. 41(13), 5843–5857 (2014)
Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware and signature generation using malicious network traces. In: NSDI (2010)
Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to us. In: USENIX Security (2008)
Rajab, M.A., Ballard, L., Lutz, N., Mavrommatis, P., Provos, N.: CAMP: content-agnostic malware protection. In: NDSS (2013)
Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: IEEE S&P (2001)
Schwenk, G., Bikadorov, A., Krueger, T., Rieck, K.: Autonomous learning for detection of javascript attacks: vision or reality? In: ACM AISec (2012)
Sculley, D., Otey, M.E., Pohl, M., Spitznagel, B., Hainsworth, J., Zhou, Y.: Detecting adversarial advertisements in the wild. In: KDD (2011)
Settles, B.: Active learning literature survey. Computer Sciences Technical report 1648, University of Wisconsin-Madison (2009)
Šrndic, N., Laskov, P.: Detection of malicious PDF files based on hierarchical document structure. In: NDSS (2013)
Stringhini, G., Kruegel, C., Vigna, G.: Shady paths: leveraging surfing crowds to detect malicious web pages. In: ACM CCS (2013)
VirusTotal. https://www.virustotal.com/. Accessed 30 Jul 2014
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Miller, B. et al. (2016). Reviewer Integration and Performance Measurement for Malware Detection. In: Caballero, J., Zurutuza, U., Rodríguez, R. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2016. Lecture Notes in Computer Science(), vol 9721. Springer, Cham. https://doi.org/10.1007/978-3-319-40667-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-40667-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40666-4
Online ISBN: 978-3-319-40667-1
eBook Packages: Computer ScienceComputer Science (R0)