Abstract
The problem of measurement effort distribution for detection of the abnormal state of distributed parameter system monitored with sensor network is considered. The measurement strategy is formulated in terms of maximizing the power of parametric hypothesis test related to the nominal system state. Then, using communication schemes based on the class of so-called gossip algorithms a computational procedure for optimizing the measurement effort over the sensor network is proposed. Finally, the presented fault detection approach is verified on the example of convective-diffusion process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
1. A. Atkinson, A. Donev, and R. Tobias. Optimum experimental designs, with SAS, volume 34. Oxford University Press, 2007.
2. S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE/ACM Transactions on Networking (TON), 14(SI):2508–2530, 2006.
3. L. H. Chiang, R. D. Braatz, and E. L. Russell. Fault detection and diagnosis in industrial systems. Springer Science & Business Media, 2001.
4. G. C. Goodwin and R. L. Payne. Dynamic system identification: experiment design and data analysis. 1977.
5. A. Jeremic and A. Nehorai. Landmine detection and localization using chemical sensor array processing. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 47(11):3185, 1999.
6. J. Korbicz and J. M. Kościelny. Modeling, diagnostics and process control: implementation in the diaster system. Springer Science & Business Media, 2010.
7. D. Kowalów and M. Patan. Optimal sensor selection for model identification in iterative learning control of spatio-temporal systems. In Methods and Models in Automation and Robotics (MMAR), 2016 21st International Conference on, pages 70–75. IEEE, 2016.
8. D. Kowalów, M. Patan, W. Paszke, and A. Romanek. Sequential design for model calibration in iterative learning control of dc motor. In Methods and Models in Automation and Robotics (MMAR), 2015 20th International Conference on, pages 794–799. IEEE, 2015.
9. A. Nehorai, B. Porat, and E. Paldi. Detection and localization of vapor-emitting sources. IEEE Transactions on Signal Processing, 43(1):243–253, 1995.
10. K. Patan, M. Patan, and D. Kowalw. Optimum training design for neural network in synthesis of robust model predictive control. In 55th IEEE Conference on Decision and Control - CDC 2016, pages 3401–3406, Las Vegas, USA, 2016. IEEE Explore.
11. M. Patan. A parallel sensor scheduling technique for fault detection in distributed parameter systems. In Euro-Par 2008–Parallel Processing, pages 833–843. Springer, 2008.
12. M. Patan. Distributed scheduling of sensor networks for identification of spatiotemporal processes. International Journal of Applied Mathematics and Computer Science, 22(2):299–311, 2012.
13. M. Patan. Optimal sensor networks scheduling in identification of distributed parameter systems, volume 425. Springer Science & Business Media, 2012.
14. M. Patan and D. Kowalów. Robust sensor scheduling via iterative design for parameter estimation of distributed systems. In Methods and Models in Automation and Robotics (MMAR), 2014 19th International Conference On, pages 618–623. IEEE, 2014.
15. M. Patan and D. Kowalów. Distributed configuration of sensor network for fault detection in spatio-temporal systems. In Journal of Physics: Conference Series, volume 783, pages 1–12. IOP Publishing, 2017.
16. M. Patan and K. Patan. Optimal observation strategies for model-based fault detection in distributed systems. International Journal of Control, 78(18):1497–1510, 2005.
17. M. Patan, C. Tricaud, and Y. Chen. Resource-constrained sensor routing for parameter estimation of distributed systems. In Proc. 17th IFAC World Congress, 2008.
18. M. Patan and D. Ucinski. Optimal activation strategy of discrete scanning sensors for fault detection in distributed-parameter systems. In Proceedings of the 16th IFAC world congress, Prague, Czech Republic, pages 4–8, 2005.
19. M. Patan and D. Uciński. Configuring a sensor network for fault detection in distributed parameter systems. International Journal of Applied Mathematics and Computer Science, 18(4):513–524, 2008.
20. R. J. Patton, P. M. Frank, and R. N. Clark. Issues of fault diagnosis for dynamic systems. Springer Science & Business Media, 2013.
21. A. Pázman. Foundations of optimum experimental design, volume 14. Springer, 1986.
22. N. Point, A. V. Wouwer, and M. Remy. Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design. Control Engineering Practice, 4(11):1553–1562, 1996.
23. B. Porat and A. Nehorai. Localizing vapor-emitting sources by moving sensors. Signal Processing, IEEE Transactions on, 44(4):1018–1021, 1996.
24. E. Rafajłowicz. Optimum choice of moving sensor trajectories for distributed-parameter system identification. International Journal of Control, 43(5):1441–1451, 1986.
25. A. Romanek, M. Patan, and D. Kowalów. Decentralized scheduling of sensor networks for parameter estimation of spatio-temporal processes. Advanced and Intelligent Computations in Diagnosis and Control, 386:145, 2015.
26. Z. Song, Y. Chen, C. R. Sastry, and N. C. Tas. Optimal observation for cyber-physical systems: a fisher-information-matrix-based approach. Springer Science & Business Media, 2009.
27. C. Tricaud and Y. Chen. Optimal mobile sensing and actuation policies in cyber-physical systems. Springer Science & Business Media, 2011.
28. C. Tricaud, M. P. Dariusz, U. Yang, and Q. Chen. D-optimal trajectory design of heterogeneous mobile sensors for parameter estimation of distributed systems. In 2008 American Control Conference, pages 663–668. IEEE, 2008.
29. D. Uciński. Optimal selection of measurement locations for parameter estimation in distributed processes. International Journal of Applied Mathematics and Computer Science, 10(2):357–379, 2000.
30. D. Uciński. Optimal measurement methods for distributed parameter system identification. CRC Press, 2004.
31. D. Uciński. Sensor network scheduling for identification of spatially distributed processes. International Journal of Applied Mathematics and Computer Science, 22(1):25–40, 2012.
32. D. Uciński and M. Patan. Sensor network design for the estimation of spatially distributed processes. International Journal of Applied Mathematics and Computer Science, 20(3):459–481, 2010.
33. É. Walter and L. Pronzato. Qualitative and quantitative experiment design for phenomenological modelsa survey. Automatica, 26(2):195–213, 1990.
34. L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 53(1):65–78, 2004.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kowalów, D., Patan, M. (2017). Distributed design of sensor network for abnormal state detection in distributed parameter systems. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_60
Download citation
DOI: https://doi.org/10.1007/978-3-319-60699-6_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60698-9
Online ISBN: 978-3-319-60699-6
eBook Packages: EngineeringEngineering (R0)