Skip to main content

A Novel Community Detection Method Based on Cluster Density Peaks

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10619))

  • 3452 Accesses

Abstract

Community structure is the basic structure of a social network. Nodes of a social network can naturally form communities. More specifically, nodes are densely connected with each other within the same community while sparsely between different communities. Community detection is an important task in understanding the features of networks and graph analysis. At present there exist many community detection methods which aim to reveal the latent community structure of a social network, such as graph-based methods and heuristic-information-based methods. However, the approaches based on graph theory are complex and with high computing expensive. In this paper, we extend the density concept and propose a density peaks based community detection method. This method firstly computes two metrics-the local density \(\rho \) and minimum climb distance \(\delta \) -for each node in a network, then identify the nodes with both higher \(\rho \) and \(\delta \) in local fields as each community center. Finally, rest nodes are assigned with corresponding community labels. The complete process of this method is simple but efficient. We test our approach on four classic baseline datasets. Experimental results demonstrate that the proposed method based on density peaks is more accurate and with low computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www-personal.umich.edu/~mejn/netdata/.

  2. 2.

    http://perso.uclouvain.be/vincent.blondel/research/louvain.html.

  3. 3.

    Python-igraph package.

References

  1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 U.S. election: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD 2005, pp. 36–43. ACM, New York (2005). http://doi.acm.org/10.1145/1134271.1134277

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  3. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008). http://dx.doi.org/10.1109/TKDE.2007.190689

    Article  MATH  Google Scholar 

  4. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72, 026132 (2005). http://link.aps.org/doi/10.1103/PhysRevE.72.026132

    Article  Google Scholar 

  5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004). http://link.aps.org/doi/10.1103/PhysRevE.70.066111

    Article  Google Scholar 

  6. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech.: Theory Exp. 2005(09), P09008 (2005). http://stacks.iop.org/1742-5468/2005/i=09/a=P09008

    Article  Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press (1996). http://dl.acm.org/citation.cfm?id=3001460.3001507

  8. Falkowski, T., Barth, A., Spiliopoulou, M.: DENGRAPH: a density-based community detection algorithm. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, WI 2007, pp. 112–115. IEEE Computer Society, Washington, DC (2007). http://dx.doi.org/10.1109/WI.2007.43

  9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). http://www.sciencedirect.com/science/article/pii/S0370157309002841

    Article  MathSciNet  Google Scholar 

  10. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  11. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). http://www.pnas.org/content/99/12/7821.abstract

    Article  MathSciNet  MATH  Google Scholar 

  12. Lusseau, D., Schneider, K., Boisseau, O., Haase, P., Slooten, E., Dawson, S.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003). http://dx.doi.org/10.1007/s00265-003-0651-y

    Article  Google Scholar 

  13. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004). http://link.aps.org/doi/10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  14. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004). http://link.aps.org/doi/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  15. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  16. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014). http://www.sciencemag.org/content/344/6191/1492.abstract

    Article  Google Scholar 

  17. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. Eur. Phys. J. Spec. Topics 178(1), 13–23 (2009). http://dx.doi.org/10.1140/epjst/e2010-01179-1

    Article  Google Scholar 

  18. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A. 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  19. Schlitter, N., Falkowski, T., et al.: DenGraph-HO: density-based hierarchical community detection for explorative visual network analysis. In: Bramer, M., Petridis, M., Nolle, L. (eds.) Research and Development in Intelligent Systems XXVIII, pp. 283–296. Springer, Londonpp (2011). https://doi.org/10.1007/978-1-4471-2318-7_22

    Chapter  Google Scholar 

  20. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 824–833. ACM, New York (2007). http://doi.acm.org/10.1145/1281192.1281280

  21. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, D., Su, Y., Li, X., Niu, Z. (2018). A Novel Community Detection Method Based on Cluster Density Peaks. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2017. Lecture Notes in Computer Science(), vol 10619. Springer, Cham. https://doi.org/10.1007/978-3-319-73618-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73618-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73617-4

  • Online ISBN: 978-3-319-73618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics