Abstract
One of the goals of person re-identification systems is to support video-surveillance operators and forensic investigators to find an individual of interest in videos acquired by a network of non-overlapping cameras. This is attained by sorting images of previously observed individuals for decreasing values of their similarity with a given probe individual. Existing appearance descriptors, together with their similarity measures, are mostly aimed at improving ranking quality. We propose two fuzzy-based descriptors which are fast in terms of the processing time on descriptor generation and matching score computation. We then evaluate our approach on three benchmark data sets (VIPeR, i-LIDS, and ETHZ) with comparison of some descriptors in the state-of-the-art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bedagkar-Gala, A., Shah, S.K.: A survey of approaches and trends in person re-identification. Image Vis. Comput. 32(4), 270–286 (2014)
Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: BMVC, p. 6 (2011)
Choi, Y., Krishnapuram, R.: A robust approach to image enhancement based on fuzzy logic. IEEE Trans. Image Proc. 6(6), 808–825 (1997)
Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian recognition with a learned metric. In: ACCV 2010, pp. 501–512. Springer, Heidelberg (2011)
Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: 2010 IEEE Conference on CVPR, pp. 2360–2367. IEEE (2010)
Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: ECCV 2008, pp. 262–275. Springer, Heidelberg (2008)
Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Proc. 19(6), 1657–1663 (2010)
Hernandez, G., Herrmann, H.J.: Cellular automata for elementary image enhancement. Graph. Models Image Proc. 58(1), 82–89 (1996)
Hirzer, M., Roth, P.M., Bischof, H.: Person re-identification by efficient impostor-based metric learning. In: AVSS, pp. 203–208. IEEE (2012)
Lavi, B., Fumera, G., Roli, F.: A multi-stage approach for fast person re-identification. In: Proceedings of the Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, S+SSPR, pp. 63–73. Springer, Cham (2016)
Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR, pp. 2197–2206 (2015)
Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: IEEE Conference on CVPR, pp. 1301–1306. IEEE (2010)
Ma, B., Su, Y., Jurie, F.: Covariance descriptor based on bio-inspired features for person re-identification and face verification. Image Vis. Comput. 32(6), 379–390 (2014)
Patel, D.K., More, S.A.: Edge detection technique by fuzzy logic and cellular learning automata using fuzzy image processing. In: 2013 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–6. IEEE (2013)
Pradipta, M., Chaudhuri, P.P.: Fuzzy cellular automata for modeling pattern classifier. IEICE Trans. Inf. Syst. 88(4), 691–702 (2005)
Prosser, B., Zheng, W.S., Gong, S., Xiang, T., Mary, Q.: Person re-identification by support vector ranking. In: BMVC, p. 6 (2010)
Rosin, P.L.: Image processing using 3-state cellular automata. Comput. Vis. Image Underst. 114(7), 790–802 (2010)
Russo, F., Ramponi, G.: A fuzzy filter for images by impulse noise. IEEE Signal Process. Lett. 3(6), 168–170 (1996)
Sahota, P., Daemi, M., Elliman, D.: Training genetically evolving cellular automata for image processing. In: Speech, Image Processing and Neural Networks, pp. 753–756. IEEE (1994)
Satta, R., Fumera, G., Roli, F., Cristani, M., Murino, V.: A multiple component matching framework for person re-id. In: ICIAP, pp. 140–149. Springer, Heidelberg (2011)
Shahverdi, R., Tavana, M., Ebrahimnejad, A., Zahedi, K., Omranpour, H.: An improved method for edge detection and image segmentation using fuzzy cellular automata. Cybern. Syst. 47(3), 161–179 (2016)
Sompong, C., Wongthanavasu, S.: An efficient brain tumor segmentation based on cellular automata and improved tumor-cut algorithm. Expert Syst. Appl. 72, 231–244 (2017)
Tyan, C.Y., Wang, P.P.: Image processing-enhancement, filtering and edge detection using the fuzzy logic approach. In: Second IEEE International Conference on Fuzzy Systems, pp. 600–605. IEEE (1993)
Zheng, W.S., Gong, S., Xiang, T.: Associating groups of people. In: BMVC, vol. 2, p. 6 (2009)
Zheng, W.S., Gong, S., Xiang, T.: Reidentification by relative distance comparison. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 653–668 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Lavi, B., Ahmed, M.A.O. (2018). Interactive Fuzzy Cellular Automata for Fast Person Re-Identification. In: Hassanien, A., Tolba, M., Elhoseny, M., Mostafa, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). AMLTA 2018. Advances in Intelligent Systems and Computing, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-74690-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-74690-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-74689-0
Online ISBN: 978-3-319-74690-6
eBook Packages: EngineeringEngineering (R0)