Abstract
This article describes a virtual rehabilitation system with work and entertainment environments to treat fine motor injuries through an active orthosis. The system was developed in the Unity 3D graphic engine, which allows the patient greater immersion in the rehabilitation process through proposed activities; to identify the movement performed, the Myo armband is used, a device capable of receiving and sending the signals obtained to a mathematical algorithm which will classify these signals and activate the physical hand orthosis completing the desired movement. The benefits of the system is the optimization of resources, infrastructure and personnel, since the therapy will be assisted by the same virtual environment, in addition it allows selecting the virtual environment and the activity to be carried out according to the disability present in the patient. The results show the correct functioning of the system performed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sanchez, J.S., et al.: Virtual Rehabilitation System for Carpal Tunnel Syndrome Through Spherical Robots. Accepted 2014
Naiker, A.: Repetitive Strain Injuries (RSI) - an ayurvedic approach. J. Ayurveda Integr. Med. Sci. 2(2), 170–173 (2017). ISSN 2456-3110
Rosales, R.S., Martin-Hidalgo, Y., Reboso-Morales, L., Atroshi, I.: Reliability and construct validity of the Spanish version of the 6-item CTS symptoms scale for outcomes assessment in carpal tunnel syndrome. BMC Musculoskelet. Disord. 17, 115 (2016)
Uehli, K., et al.: Sleep problems and work injuries: a systematic review and meta-analysis. Sleep Med. Rev. 18(1), 61–73 (2014)
Patti, F., et al.: The impact of outpatient rehabilitation on quality of life in multiple sclerosis. J. Neurol. 249(8), 1027–1033 (2002)
Ueki, S., et al.: Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEEASME Trans. Mechatron. 17(1), 136–146 (2012)
Chang, W.H., Kim, Y.-H.: Robot-assisted therapy in stroke rehabilitation. J. Stroke 15(3), 174–181 (2013)
Laver, K., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Stroke 43(2), e20–e21 (2012)
Lohse, K.R., Hilderman, C.G.E., Cheung, K.L., Tatla, S., der Loos, H.F.M.V.: Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS ONE 9(3), e93318 (2014)
North, M.M., North, S.M., Coble, J.R.: Virtual reality therapy: an effective treatment for the fear of public speaking. Int. J. Virtual Real. IJVR 03(3), 1–6 (2015)
Turolla, A., et al.: Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J. Neuroeng. Rehabil. 10, 85 (2013)
Romero, P., León, A., Arteaga, O., Andaluz, V.H., Cruz, M.: Composite materials for the construction of functional orthoses. Accepted 2017
Benalcázar, M.E., Jaramillo, A.G., Jonathan, A., Zea, A., Páez, V.H.: Andaluz: hand gesture recognition using machine learning and the Myo armband. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1040–1044 (2017)
Maroukis, B.L., Chung, K.C., MacEachern, M., Mahmoudi, E.: Hand trauma care in the united states: a literature review. Plast. Reconstr. Surg. 137(1), 100e–111e (2016)
Feron, L.O., Boniatti, C.M., Arruda, F.Z., Butze, J., Conde, A.: lesões por esforço repetitivo em cirurgiões-dentistas: uma revisão da literatura. Rev. Ciênc. Saúde 16(2), 79–86 (2014)
Putz-Anderson, V.: Cumulative Trauma Disorders. CRC Press, Boca Raton (2017)
Oktayoglu, P., Nas, K., Kilinç, F., Tasdemir, N., Bozkurt, M., Yildiz, I.: Assessment of the presence of carpal tunnel syndrome in patients with diabetes mellitus, hypothyroidism and acromegaly. J. Clin. Diagn. Res. JCDR 9(6), OC14–OC18 (2015)
Villafañe, J., Cleland, J., Fernánde-de-las-Peñas, C.: the effectiveness of a manual therapy and exercise protocol in patients with thumb carpometacarpal osteoarthritis: a randomized controlled trial. J. Orthop. Sports Phys. Ther. 43(4), 204–213 (2013)
Langer, D., Maeir, A., Michailevich, M., Applebaum, Y., Luria, S.: Using the international classification of functioning to examine the impact of trigger finger. Disabil. Rehabil. 38(26), 2530–2537 (2016)
da Silva Dulci Medeiros, M., Santana, D.V.G., de Souza, G.D., Souza, L.R.Q.: Tenossinovite de Quervain: aspectos diagnósticos. Rev. Med. E Saúde Brasília 5(2), 307–312 (2016)
Werthel, J.-D., Cortez, M., Elhassan, B.T.: Modified percutaneous trigger finger release. Hand Surg. Rehabil. 35(3), 179–182 (2016)
Chang, K.-H.: Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2016. SDC Publications (2016)
Andaluz, V.H., Pazmiño, A.M., Pérez, J.A., Carvajal, C.P., Lozada, F., Lascano, J., Carvajal, J.: Training of tannery processes through virtual reality. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 75–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_6
Acknowledgements
The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GIARSI, for the support to develop this paper.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
León, M.A. et al. (2018). Virtual Rehabilitation System for Fine Motor Skills Using a Functional Hand Orthosis. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-95282-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95281-9
Online ISBN: 978-3-319-95282-6
eBook Packages: Computer ScienceComputer Science (R0)