Abstract
Humans are interested in the knowledge of honeybee pollen composition, which depends on the local flora surrounding the beehive, due to their nutritional value and therapeutical benefits. Currently, pollen composition is manually determined by an expert palynologist counting the proportion of pollen types analyzing the pollen of the hive with an optical microscopy. This procedure is tedious and expensive for its systematic application. We present an automatic methodology to discriminate pollen loads of various genus based on texture classification. The method consists of three steps: after selection non-blurred regions of interest (ROIs) in the original image, a texture feature vector for each ROI is calculated, which is used to discriminate between pollen types. An statistical evaluation of the algorithm is provided and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carrión, P., Cernadas, E., Sá-Otero, P., Díaz-Losada, E.: Could the Pollen Origin be Determined using Computer Vision? An Experimental Study. In: IASTED International Conference on Visualization, Imaging, and Image Processing, pp. 74–79 (2002)
Daubechies, I.: Ortonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. XLI, 909–996 (1988)
Diaz Losada, E., Fernńdez Gómez, E., Alvarez Carro, C., Saa Otero, M.P.: Aportación al conocimiento del origen floral y composición quimica del polen apicola de Galicia (Spain). Boletin de la Real Sociedad Española de Historia Natural 92(1-4), 195–202 (1996)
Diaz Losada, E., González Porto, A.V., Saa Otero, M.P.: tude de la culeur du pollen apicole recueilli pa Apis mellifer L. en nord-ouest d’Espagne (Galice). Acta Botanica Gallica 145(1), 39–48 (1998)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Jonh Wiley Sons, Chichester (2001)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural Features for Image Classification. IEEE Trans. on Man and Cibernetics 3(6), 610–621 (1973)
Haralick, R.M., Shapiro, L.: Computer and Robot Vision. Addison-Wesley, Reading (1993)
Hidalgo, M.I., Bootello, M.L.: About some physical characteristics of the pollen loads collected by Apis mellifera L. Apicoltura 6, 179–191 (1990)
Hodges, D.: The pollen loads of the honeybee. In: Bee Research Association, p. 48 (1984)
Laine, A., Fan, J.: Texture classification by Wavelet Packet signatures. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(11), 1186–1191 (1993)
Laws, K.I.: Rapid texture identification: image processing for missile guidance. In: SPIE, vol. 238, pp. 376–380 (1980)
Mallat, S.: A threary for multiresolution signal descomposition: the wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)
Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 15, 1119–1125 (1994)
Sá-Otero, M.P., Diaz-Losada, E., González-Porto, A.V.: Relacin categorizada de especies de la flora gallega (NO de Espaa) que Apis Melifera L. utiliza como fuente de polen. Boletin de la Real Sociedad Española de Historia Natural 96(3-4), 81–89 (2001)
Sá-Otero, P., Canal-Camba, P., Diaz-Losada, E.: Initial data on the specific heterogeneity foundin the bee pollen loads produced in the ”Baixa-Limia-Serra do Xurés” Nature Park (2002)
Siew, L.H., Hodgson, R.M., Wood, E.J.: Texture Measures for Carpet Wear Assessment. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(1), 92–104 (1988)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. International Thomsom Publishing (ITP) (1999)
Thai, B., Healey, G.: Optimal spatial filter selection for illuminationinvariant color texture discrimitation. IEEE Transations on System, Man and Cybernetics 30(4), 610–616 (2000)
Theodoridis, S., Koutroumbas, K.: Pattern recognition. Academic Press, London (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carrión, P., Cernadas, E., Gálvez, J.F., Díaz-Losada, E. (2003). Determine the Composition of Honeybee Pollen by Texture Classification. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu, A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science, vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44871-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-44871-6_19
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40217-6
Online ISBN: 978-3-540-44871-6
eBook Packages: Springer Book Archive