Abstract
In this paper we propose a novel Gaussian MRF approach for regularization of tensor fields for fiber tract enhancement. The model follows the Bayesian paradigm: prior and transition. Both models are given by Gaussian distributions. The prior and the posterior distributions are Gauss-MRFs. The prior MRF promotes local spatial interactions. The posterior MRF promotes that local spatial interactions which are compatible with the observed data. All the parameters of the model are estimated directly from the data. The regularized solution is given by means of the Simulated Annealing algorithm. Two measures of regularization are proposed for quantifying the results. A complete volume DR-MRI data have been processed with the current approach. Some results are presented by using some visually meaningful tensor representations and quantitatively assessed by the proposed measures of regularization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P., Pierpaoli, C.: Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI. Journal of Magnetic Resonance, Ser. B 111(3), 209–219 (1996)
Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)
Martín-Fernández, M., San José Estépar, R., Westin, C.F., Alberola-López, C.: A Novel Gauss-Markov Random Field Approach for Regularization of Diffusion Tensor Maps. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 29–32. Springer, Heidelberg (2003)
Golub, G.H., Van Loan, C.F.: Matrix Computations. John Hopkins University Press, Baltimore (1996)
Parker, G.J.M., Schnabel, J.A., Symms, M.R., Werring, D.J., Barker, G.J.: Nonlinear Smoothing for Reduction of Systematic and Random Errors in Diffusion Tensor Imaging. Journal of Magnetic Resonance Imaging 11(6), 702–710 (2000)
Poupon, C., Mangin, J.F., Frouin, V., Regis, J., Poupon, F., Pachot-Clouard, M., Le Bihan, D., Bloch, I.: Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles. In: Wells, W.M., Colchester, A., Delp, S. (eds.), October 1998. LNCS, vol. 1946, pp. 489–498 (1998)
Poupon, C., Clark, C.A., Frouin, V., Regis, J., Le Bihan, D., Bloch, I., Mangin, J.F.: Regularization Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles. NeuroImage 12, 184–195 (2000)
Tschumperlé, D., Deriche, R.: DT-MRI Images: Estimation, Regularization and Application. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 46–47. Springer, Heidelberg (2003)
Westin, C.F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and Visualization for Diffusion Tensor MRI. Medical Image Analysis 6(2), 93–108 (2002)
Westin, C.F., Knuttson, H.: Tensor Field Regularization using Normalized Convolution. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 67–70. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martín-Fernández, M., Josá-Estépar, R.S., Westin, CF., Alberola-López, C. (2003). A Novel Gauss-Markov Random Field Approach for Regularization of Diffusion Tensor Maps. In: Moreno-Díaz, R., Pichler, F. (eds) Computer Aided Systems Theory - EUROCAST 2003. EUROCAST 2003. Lecture Notes in Computer Science, vol 2809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45210-2_46
Download citation
DOI: https://doi.org/10.1007/978-3-540-45210-2_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20221-9
Online ISBN: 978-3-540-45210-2
eBook Packages: Springer Book Archive