Abstract
Existing algorithms for learning Bayesian network (BN) require a lot of computation on high dimensional itemsets, which affects accuracy especially on limited datasets and takes up a large amount of time. To alleviate the above problem, we propose a novel BN learning algorithm MRMRG, Max Relevance and Min Redundancy Greedy algorithm. MRMRG algorithm is a variant of K2 algorithm for learning BNs from limited datasets. MRMRG algorithm applies Max Relevance and Min Redundancy feature selection technique and proposes Local Bayesian Increment (LBI) function according to the Bayesian Information Criterion (BIC) formula and the likelihood property of overfitting. Experimental results show that MRMRG algorithm has much better efficiency and accuracy than most of existing BN learning algorithms when learning BNs from limited datasets.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Heckerman, D.: Bayesian Networks for Data Mining, 1st edn. Microsoft Press, Redmond (1997)
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, Massachusetts (2000)
Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Belief Networks form Data: An Information Theory Based Approach. Artificial Intelligence 137(1-2), 43–90 (2002)
Cooper, G., Herskovits, E.: A Bayesian Method for Constructing Bayesian Belief Networks from Databases. In: Ambrosio, B., Smets, P. (eds.) UAI 1991. Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence, pp. 86–94. Morgan Kaufmann, San Francisco (1991)
Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks: the Combination of Knowledge and Statistical Data. Machine Learning 20(3), 197–243 (1995)
Wai, L., Fahiem, B.: Learning Bayesian Belief Networks An approach based on the MDL Principle. Computational Intelligence 10(4), 269–293 (1994)
Hanchuan, P., Chris, D., Fuhui, L.: Minimum redundancy maximum relevance feature selection. IEEE Intelligent Systems 20(6), 70–71 (2005)
HanChuan, P., Fuhui, L., Chris, D.: Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on PAMI 27(8), 1226–1238 (2005)
Teyssier, M., Koller, D.: Ordering-Based Search: A Simple and Effective Algorithm for Learning Bayesian Networks. In: Chickering, M., Bacchus, F., Jaakkola, T. (eds.) UAI 2005. Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pp. 584–590. Morgan Kaufmann, San Francisco CA (2005)
Moore, D.S.: Goodness-of-Fit Techniques, 1st edn. Marcel Dekker, New York (1986)
Steck, H.: On the Use of Skeletons when Learning in Bayesian Networks. In: Boutilier, C., Goldszmidt, M. (eds.) UAI 2000. Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp. 558–565. Morgan Kaufmann, San Francisco (2000)
Moore, A.W., Wong, W.K.: Optimal Reinsertion: A New Search Operator for Accelerated and More Accurate Bayesian Network Structure Learning. In: Fawcett, T., Mishra, N. (eds.) ICML 2003 – Machine Learning. Proceedings of the Twentieth International Conference, pp. 552–559. AAAI Press, Washington DC (2003)
Friedman, N., Nachman, I., Peter, D.: Learning Bayesian Network Structure from Massive Datasets: The Sparse Candidate algorithm. In: Laskey, K.B. (ed.) UAI 1999. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 196–205. Morgan Kaufmann, San Francisco (1999)
Ioannis, T., Laura, E.B.: The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Machine Learning 65(1), 31–78 (2006)
Margaritis, D., Thrun, S.: Bayesian Network Induction via Local Neighborhoods. In: Solla, S.A., Leen, T.K., Muller, K. (eds.) NIPS 1999. Advances in Neural Information Processing Systems 12, pp. 505–511. MIT Press, Cambridge (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Liu, F., Tian, F., Zhu, Q. (2007). A Novel Greedy Bayesian Network Structure Learning Algorithm for Limited Data. In: Alhajj, R., Gao, H., Li, J., Li, X., Zaïane, O.R. (eds) Advanced Data Mining and Applications. ADMA 2007. Lecture Notes in Computer Science(), vol 4632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73871-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-73871-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73870-1
Online ISBN: 978-3-540-73871-8
eBook Packages: Computer ScienceComputer Science (R0)