Skip to main content

A Multisource Context-Dependent Semantic Distance Between Concepts

  • Conference paper
Database and Expert Systems Applications (DEXA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4653))

Included in the following conference series:

  • 1250 Accesses

Abstract

A major lack in the existing semantic similarity methods is that no one takes into account the context or the considered domain. However, two concepts similar in one context may appear completely unrelated in another context. In this paper, our first-level approach is context-dependent. We present a new method that computes semantic similarity in taxonomies by considering the context pattern of the text corpus. In addition, since taxonomies and corpora are interesting resources and each one has its strengths and weaknesses, we propose to combine similarity methods in our second-level multi-source approach. The performed experiments showed that our approach outperforms all the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. And, N.S.: An intrinsic information content metric for semantic similarity in wordnet

    Google Scholar 

  2. Barsalou, L.: Intraconcept similarity and its application for interconcept similarity. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  3. Christopher, H.S.: MANNING. Foundations of statistical natural language processing (1999)

    Google Scholar 

  4. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. In: Proceedings of the 27th. Annual Meeting of the Association for Computational Linguistics, Vancouver, pp. 76–83. Association for Computational Linguistics (1989)

    Google Scholar 

  5. Dagan, I., Lee, L., Pereira, F.C.N.: Similarity-based models of word cooccurrence probabilities. Machine Learning 34(1-3), 43–69 (1999)

    Article  MATH  Google Scholar 

  6. Furnas, G.W., Deerwester, S.C., Dumais, S.T., Landauer, T.K., Harshman, R.A., Streeter, L.A., Lochbaum, K.E.: Information retrieval using a singular value decomposition model of latent semantic structure. In: Chiaramella, Y. (ed.) SIGIR, pp. 465–480. ACM Press, New York (1988)

    Google Scholar 

  7. Hindle, D.: Noun classification from predicate-argument structures. In: Meeting of the Association for Computational Linguistics, pp. 268–275 (1990)

    Google Scholar 

  8. Hirst, G., St-Onge, D.: Lexical chains as representation of context for the detection and correction malapropisms (1997)

    Google Scholar 

  9. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy (1997)

    Google Scholar 

  10. Leacock, C., Chodorow, M., Miller, G.A.: Using corpus statistics and wordnet relations for sense identification. Computational Linguistics 24(1), 147–165 (1998)

    Google Scholar 

  11. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th International Conf. on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  12. Medin, D.: Psychological essentialism. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  13. Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  14. Miller, G.A., Charles, W.: Contextual correlated of semantic similarity. Language and Cognitive Processes 6, 1–28 (1991)

    Article  Google Scholar 

  15. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics 19(1), 17–30 (1989)

    Article  Google Scholar 

  16. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. (JAIR) 11, 95–130 (1999)

    MATH  Google Scholar 

  17. Turney, P.D.: Mining the Web for synonyms: PMI–IR versus LSA on TOEFL. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, p. 491. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)

    Article  Google Scholar 

  19. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd. Annual Meeting of the Association for Computational Linguistics, New Mexico State University, Las Cruces, New Mexico, pp. 133–138 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roland Wagner Norman Revell Günther Pernul

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El Sayed, A., Hacid, H., Zighed, D. (2007). A Multisource Context-Dependent Semantic Distance Between Concepts. In: Wagner, R., Revell, N., Pernul, G. (eds) Database and Expert Systems Applications. DEXA 2007. Lecture Notes in Computer Science, vol 4653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74469-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74469-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74467-2

  • Online ISBN: 978-3-540-74469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics