Summary
In this chapter, we present Computational Intelligence algorithms, such as Neural Network algorithms, Evolutionary Algorithms, and clustering algorithms and their application to DNA microarray experimental data analysis. Additionally, dimension reduction techniques are evaluated. Our aim is to study and compare various Computational Intelligence approaches and demonstrate their applicability as well as their weaknesses and shortcomings to efficient DNA microarray data analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jiang, D., Tang, C., Zhangi, A.: Cluster analysis for gene expression data: A survey. IEEE Transactions on Knowledge and Data Engineering 16(11) (2004) 1370–1386
Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armananzas, R., Santafe, G., Perez, A., Robles, V.: Machine learning in bioinformatics. Briefings in Bioinformatics 7(1) (2006) 86–112
Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5) (2005) 631–643
Wall, M., Rechtsteiner, A., Rocha, L.: Singular value decomposition and principal component analysis. In: A Practical Approach to Microarray Data Analysis. Kluwer (2003) 91–109
Van Mechelen, I., Bock, H.H., De Boeck, P.: Two-mode clustering methods:a structured overview. Statistical Methods in Medical Research 13(5) (2004) 363–394
Kung, S.Y., Mak, M.W.: A Machine Learning Approach to DNA Microarray Biclustering Analysis. In: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, (2005) 314–321
Wang, Z., Wang, Y., Xuan, J., Dong, Y., Bakay, M., Feng, Y., Clarke, R., Hoffman, E.P.: Optimized multilayer perceptrons for molecular classification and diagnosis using genomic data. Bioinformatics 22(6) (2006) 755–761
Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. MIT Press Cambridge, MA, USA (1986)
Gill, P., Murray, W., Wright, M.: Practical optimization. London: Academic Press, (1981)
Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA. (1993) 586–591
Sutton, R., Whitehead, S.: Online learning with random representations. Proceedings of the Tenth International Conference on Machine Learning (1993) 314–321
Magoulas, G., Plagianakos, V.P., Vrahatis, M.N.: Development and convergence analysis of training algorithms with local learning rate adaptation. In: IEEE International Joint Conference on Neural Networks (IJCNN’2000), 1 (2000) 21–26.
Plagianakos, V.P., Magoulas, G., Vrahatis, M.N.: Global learning rate adaptation in on-line neural network training. In: Second International ICSC Symposium on Neural Computation (NC’2000). (2000)
Bäck, T., Schwefel, H.: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1) (1993) 1–23
Storn, R., Price, K.: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. Journal of Global Optimization 11 (1997) 341–359
Storn, R., Price, K.: Minimizing the real functions of the icec’96 contest by differential evolution. In: IEEE Conference on Evolutionary Computation. (1996) 842–844
DiSilvestro, M., Suh, J.K.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. Journal of Biomechanics 34 (2001) 519–525
Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed forward neural networks. Neural Processing Letters 17(1) (2003) 93–105
Plagianakos, V.P., Vrahatis, M.N.: Neural network training with constrained integer weights. In Angeline, P., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A., eds.: Proceedings of the Congress of Evolutionary Computation (CEC’99). IEEE Press (1999) 2007–2013
Plagianakos, V.P., Vrahatis, M.N.: Training neural networks with 3–bit integer weights. In Banzhaf, W., Daida, J., Eiben, A., Garzon, M., Honavar, V., Jakiela, M., Smith, R., eds.: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99). Morgan Kaufmann (1999) 910–915
Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differential evolution. In: IEEE Congress on Evolutionary Computation (CEC 2004), 2 (2004) 2023–2029
Plagianakos, V.P., Vrahatis, M.N.: Parallel evolutionary training algorithms for ‘hardware-friendly’ neural networks. Natural Computing 1 (2002) 307–322
Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Clustering in evolutionary algorithms to efficiently compute simultaneously local and global minima. In: IEEE Congress on Evolutionary Computation. Volume 2., Edinburgh, UK (2005) 1847–1854
John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: International Conference on Machine Learning. (1994) 121–129
Aggarwal, C., Wolf, J., Yu, P., Procopiuc, C., Park, J.: Fast algorithms for projected clustering. In: 1999 ACM SIGMOD international conference on Management of data, ACM Press (1999) 61–72
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: 1998 ACM SIGMOD international conference on Management of data, ACM Press (1998) 94–105
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer-Verlag (2001)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: Advances in Knowledge Discovery and Data Mining. MIT Press (1996)
Aldenderfer, M., Blashfield, R.: Cluster Analysis. Volume 44 of Quantitative Applications in the Social Sciences. SAGE Publications, London (1984)
Ramasubramanian, V., Paliwal, K.: Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding. IEEE Transactions on Signal Processing 40(3) (1992) 518–531
Becker, R., Lago, G.: A global optimization algorithm. In: Proceedings of the 8th Allerton Conference on Circuits and Systems Theory. (1970) 3–12
Torn, A., Zilinskas, A.: Global Optimization. Springer-Verlag, Berlin (1989)
Alon, U., Barkai, N., Notterman, D., K.Gish, Ybarra, S., Mack, D., Levine, A.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide array. Proc. Natl. Acad. Sci. USA 96(12) (1999) 6745–6750
Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863–14868
Shamir, R., Sharan, R.: Click: A clustering algorithm for gene expression analysis. In: 8th International Conference on Intelligent Systems for Molecular Biology (ISMB 00), AAAI Press (2000)
Tavazoie, S., Hughes, J., Campbell, M., Cho, R., Church, G.: Systematic determination of genetic network architecture. Nature Genetics volume 22 (1999) 281–285
Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Unsupervised clustering in mRNA expression profiles. Computers in Biology and Medicine 36(10) (2006)
Wen, X., Fuhrman, S., Michaels, G., Carr, D., Smith, S., Barker, J., Somogyi, R.: Large-scale temporal gene expression mapping of cns development. Proceedings of the National Academy of Science USA 95 (1998) 334–339
Golub, T., Slomin, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531–537
Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Computing Surveys 31(3) (1999) 264–323
Alizadeh, A., et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769) (2000) 503–511
Perou C., Jeffrey, S., de Rijn, M.V., Rees, C., Eisen, M., Ross, D., Pergamenschikov, A., Williams, C., Zhu, S., J.C. Lee, D.L., Shalon, D., Brown, P., Botstein, D.: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci. USA 96 (1999) 9212–9217
Xing, E., Karp, R.: Cliff: Clustering of high–dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics Discovery Note 1 (2001) 1–9
Tamayo, P., Slonim, D., Mesirov, Q., Zhu, J., Kitareewan, S., Dmitrovsky, E., Lander, E., Golub, T.: Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96 (1999) 2907–2912
Alter, O., Brown, P., Bostein, D.: Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97(18) (2000) 10101–10106
Szallasi, Z., Somogyi, R.: Genetic network analysis – the millennium opening version. In: Pacific Symposium of BioComputing Tutorial. (2001)
Tasoulis, D.K., Vrahatis, M.N.: Unsupervised distributed clustering. In: Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Networks, Innsbruck, Austria (2004) 347–351
Vrahatis, M.N., Boutsinas, B., Alevizos, P., Pavlides, G.: The new k-windows algorithm for improving the k-means clustering algorithm. Journal of Complexity 18 (2002) 375–391
Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2) (1998) 169–194
Boley, D.: Principal direction divisive partitioning. Data Mining and Knowledge Discovery 2(4) (1998) 325–344
Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers (1981)
Fritzke, B.: Growing cell structures a self-organizing network for unsupervised and supervised learning. Neural Netw. 7(9) (1994) 1441–1460
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering points to identify the clustering structure. In: Proceedings of ACM-SIGMOD International Conference on Management of Data. (1999)
Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd Int. Conf. on Knowledge Discovery and Data Mining. (1996) 226–231
Procopiuc, C., Jones, M., Agarwal, P., Murali, T.: A Monte Carlo algorithm for fast projective clustering. In: Proc. 2002 ACM SIGMOD, New York, NY, USA, ACM Press (2002) 418–427
Berkhin, P.: A survey of clustering data mining techniques. In Kogan, J., Nicholas, C., Teboulle, M., eds.: Grouping Multidimensional Data: Recent Advances in Clustering. Springer, Berlin (2006) 25–72
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3) (1999) 264–323
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Addison-Wesley, Boston (2005)
Tasoulis, D.K., Vrahatis, M.N.: Novel approaches to unsupervised clustering through the k-windows algorithm. In Sirmakessis, S., ed.: Knowledge Mining. Volume 185 of Studies in Fuzziness and Soft Computing. Springer-Verlag (2005) 51–78
Hartigan, J., Wong, M.: A k-means clustering algorithm. Applied Statistics 28 (1979) 100–108
Zeimpekis, D., Gallopoulos, E.: PDDP(l): Towards a Flexing Principal Direction Divisive Partitioning Clustering Algorithms. In Boley, D., Dhillon, I., Ghosh, J., Kogan, J., eds.: Proc. IEEE ICDM ’03 Workshop on Clustering Large Data Sets, Melbourne, Florida (2003) 26–35
Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1 (2002) 203–209
Thomas, J., Olson, J., Tapscott, S., Zhao, L.: An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Research 11 (2001) 1227–1236
Kohonen, T.: Self–Organized Maps. Springer Verlag, New York, Berlin (1997)
Ye, J., Li, T., Xiong, T., Janardan, R.: Using uncorrelated discriminant analysis for tissue classification with gene expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(4) (2004) 181–190
Plagianakos, V.P., Tasoulis, D.K., Vrahatis, M.N.: Hybrid dimension reduction approach for gene expression data classification. In: International Joint Conference on Neural Networks 2005, Post-Conference Workshop on Computational Intelligence Approaches for the Analysis of Bioinformatics Data. (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N. (2008). Computational Intelligence Algorithms and DNA Microarrays. In: Kelemen, A., Abraham, A., Chen, Y. (eds) Computational Intelligence in Bioinformatics. Studies in Computational Intelligence, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76803-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-76803-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76802-9
Online ISBN: 978-3-540-76803-6
eBook Packages: EngineeringEngineering (R0)