In the area of decision-making under uncertainty, the use of fuzzy integrals, most notably the Choquet integral and its variants, has attracted much attention in recent years. It is a powerful and elegant way to extend the traditional model of (subjective) expected utility (on this model, see Fishburn, 1970, 1982). Indeed, integrating with respect to a non-necessarily additive measure allows to weaken the independence hypotheses embodied in the additive representation of preferences underlying the expected utility model that have often been shown to be violated in experiments (see the pioneering experimental findings of Allais, 1953; Ellsberg, 1961). Models based on Choquet integrals have been axiomatized in a variety of ways (see Gilboa, 1987; Schmeidler, 1989; or Wakker, 1989, Chap. 6. For related works in the area of decision-making under risk, see Quiggin, 1982; and Yaari, 1987). Recent reviews of this research trend can be found in Chateauneuf and Cohen (2000), Schmidt (2004), Starmer (2000) and Sugden (2004).
More recently, still in the area of decision-making under uncertainty, Dubois, Prade, and Sabbadin (2000b) have suggested to replace the Choquet integral by a Sugeno integral (see Sugeno, 1974, 1977), the latter being a kind of “ordinal counterpart” of the former, and provided an axiomatic analysis of this model (special cases of the Sugeno integral are analyzed in Dubois, Prade, & Sabbadin 2001b. For a related analysis in the area of decision-making under risk, see Hougaard & Keiding, 1996). Dubois, Marichal, Prade, Roubens, and Sabbadin (2001a) offer a lucid survey of these developments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allais, M. (1953). Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'école américaine.Econometrica 21, 503–546.
Arrow, K. J. (1963).Social choice and individual values(2nd ed.). Wiley, New York.
Bana e Costa, C. A. & Vansnick, J.-C. (1994). MACBETH: An interactive path towards the construction of cardinal value functions.International Transactions in Operational Research,1, 489–500.
Bana e Costa, C. A. & Vansnick, J.-C. (1997). Applications of the MACBETH approach in the framework of an additive aggregation model.Journal of Multi-Criteria Decision Analysis,6, 107–114.
Bana e Costa, C. A. & Vansnick, J.-C. (1999). The MACBETH approach: Basic ideas, software and an application. In N. Meskens & M. Roubens (Eds.),Advances in decision analysis(pp. 131–157). Dordrecht: Kluwer.
Bouyssou, D. & Marchant, Th. (2007). An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories.European Journal of Operational Research 178(1), 246–276.
Bouyssou, D. & M. Pirlot (2004). Preferences for multiattributed alternatives: Traces, dominance, and numerical representations.Journal of Mathematical Psychology 48(3), 167–185.
Bouyssou, D. & Pirlot, M. (2005). A characterization of concordance relations.European Journal of Operational Research 167(2), 427–443.
Chateauneuf, A. & Cohen, M. (2000). Choquet expected utility model: A new approach to individual behavior under uncertainty and to social welfare. In M. Grabisch, T. Murofushi, and M. Sugeno (Eds.),Fuzzy Measures and Integrals: Theory and Applications, (pp. 289–313). Heidelberg: Physica.
Choquet, G. 1953. Theory of capacities.Annales de l'Institut Fourier,5, 131–295.
Dubois, D., Grabisch, M., Modave, F., & Prade, H. (2000a). Relating decision under uncertainty and multicriteria decision making models.International Journal of Intelligent Systems,15, 967–979.
Dubois, D., Marichal, J.-L., Prade, H., Roubens, M., & Sabbadin, R. (2001a). The use of the discrete Sugeno integral in decision making: A survey.International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,9, 539–561.
Dubois D., Prade, H., & Sabbadin, R. (2000b). Qualitative decision theory with Sugeno integrals. In M. Grabisch, T. Murofushi, & M. Sugeno (Eds.),Fuzzy measures and integrals: Theory and applications(pp. 314–332). Heidelberg: Physica.
Dubois, D., Prade, H., & Sabbadin, R. (2000b). Qualitative decision theory with Sugeno integrals. In M. Grabisch, T. Murofushi, & M. Sugeno (Eds.),Fuzzy Measures and Integrals: Theory and Applications, (pp. 314–332). Heidelberg: Physica.
Dubois, D., Prade, H., & Sabbadin, R. (2001b). Decision-theoretic foundations of qualitative possibility theory.European Journal of Operational Research 128, 459–478.
Ellsberg, D. (1961). Risk, ambiguity and the Savage axioms.Quarterly Journal of Economics 75, 643–669.
Fishburn, P.C. (1970).Utility theory for decision-making. New-York: Wiley.
Fishburn, P.C. (1975). Axioms for lexicographic preferences.Review of Economic Studies,42, 415–419.
Fishburn, P.C. (1976). Noncompensatory preferences.Synthese,33, 393–403.
Fishburn, P.C. (1978). A survey of multiattribute/multicriteria evaluation theories. In S. Zionts (Ed.),Multicriteria problem solving, (pp. 181–224). Berlin: Springer Verlag.
Fishburn, P.C. (1982).The Foundations of Expected Utility. Dordrecht: D. Reidel.
Gilboa, I. (1987). Expected utility with purely subjective non-additive probabilities.Journal of Mathematical Economics,16, 65–68.
Gonzales, Ch. & Perny, P. (2005). GAI networks for decision making under cetainty. In R. Brafman & U. Junker (Eds.),Proceedings of the 19th International Joint Conference on Artificial Intelligence — Workshop on advances in preference handling, (pp. 100–105).
Grabisch, M. (1995). Fuzzy integral in multicriteria decision making.Fuzzy Sets and Systems,69(3), 279–298.
Grabisch, M. (1996). The application of fuzzy integrals to multicriteria decision making.European Journal of Operational Research,89, 445–456.
Grabisch, M. & Labreuche, C. (2004). Fuzzy measures and integrals in MCDA. In J. Figueira, S. Greco, & M. Ehrgott (Eds.),Multiple Criteria Decision Analysis, (pp. 563–608). Kluwer Academic Publishers.
Grabisch, M., Labreuche, C., & Vansnick, J.-C. (2003). On the extension of pseudo-boolean functions for the aggregation of interacting criteria.European Journal of Operational Research,148(1), 28–47.
Grabisch, M. & Roubens, M. (2000). Application of the Choquet integral in multicriteria decision making. In M. Grabisch, T. Murofushi, & M. Sugeno (Eds.),Fuzzy Measures and Integrals: Theory and Applications, (pp. 348–374). Heidelberg: Physica.
Greco, S., Matarazzo, B., & Slowiński, R. (1999). The use of rough sets and fuzzy sets in MCDM. In T. Gal, T. Hanne., & T. Stewart (Eds.),Multicriteria decision making, Advances in MCDM models, algorithms, theory and applications, Dordrecht, (pp. 14.1–14.59). Dordrecht: Kluwer.
Greco, S., Matarazzo, B., & Slowiński, R. (2001). Conjoint measurement and rough set approach for multicriteria sorting problems in presence of ordinal criteria. In A. Colorni, M. Paruccini, & B. Roy (Eds.),A-MCD-A, Aide Multicritère à la Décision / Multiple Criteria Decision Aid, (pp. 117–144). European Commission, Joint Research Centre.
Greco, S., Matarazzo, B., & Slowiński, R. (2004). Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules.European Journal of Operational Research,158(2), 271–292.
Hougaard, J. L. & Keiding, H. (1996). Representation of preferences on fuzzy measures by a fuzzy integral.Mathematical Social Sciences,31, 1–17.
Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971).Foundations of measurement, Vol. 1: Additive and polynomial representations. New-York: Academic.
Marichal, J.-L. (2000a). On Choquet and Sugeno integrals as aggregation functions. In M. Grabisch, T. Murofushi, and M. Sugeno (Eds.),Fuzzy measures and integrals, (pp. 247–272). Heidelberg: Physica.
Marichal, J.-L. (2000b). On Sugeno integrals as an aggregation function.Fuzzy Sets and Systems,114, 347–343.
Quiggin, J. (1982). A theory of anticipated utility.Journal of Economic Behaviour and Organization,3, 323–343.
Schmeidler, D. (1989). Subjective probability and expected utility without additivity.Economet-rica,57, 571–587. (first version: 1984)
Schmidt, U. (2004). Alternatives to expected utility: Some formal theories. In S. Barberà, P. J. Hammond, & C. Seidl (Eds.),Handbook of Utility Theory, (Vol. 2, pp. 757–837). Dordrecht: Kluwer.
Slowiński, R., Greco, S., & Matarazzo, B. (2002). Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle.Control and Cybernetics,31(4), 1005–1035.
Starmer, C. (2000). Developments in non-expected utility theory: The hunt for a descriptive theory of choice under risk.Journal of Economic Literature,XXXVIII, 332–382.
Sugden, R. (2004). Alternatives to expected utility: Foundations. In S. Barberà, P. J. Hammond, & C. Seidl (Eds.),Handbook of Utility Theory, (Vol. 2, pp. 685–755). Dordrecht: Kluwer.
Sugeno, M. (1974).Theory of fuzzy integrals and its applications. Phd thesis, Tokyo Institute of Technology.
Sugeno, M. (1977). Fuzzy measures and fuzzy integrals: a survey. In M. M. Gupta, G. N. Saridis, & B. R. Gaines (Eds.),Fuzzy automata and decision processes(pp. 89–102). Amsterdam: North Holland.
Wakker, P. P. (1989).Additive representations of preferences: A new foundation of decision analysis. Dordrecht: Kluwer.
Yaari, M. E. (1987). The dual theory of choice under risk.Econometrica,55, 95–115.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bouyssou, D., Marchant, T., Pirlot, M. (2009). A Conjoint Measurement Approach to the Discrete Sugeno Integral. In: Brams, S.J., Gehrlein, W.V., Roberts, F.S. (eds) The Mathematics of Preference, Choice and Order. Studies in Choice and Welfare. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79128-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-79128-7_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79127-0
Online ISBN: 978-3-540-79128-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)