Abstract
This paper develops a nonparametric marginal Fisher analysis (NMFA) technique for dimensionality reduction of high dimensional data. According to the different distributions of the training data, two classification criterions are proposed. Based on the new classification criterions, the local mean vectors with most discriminative information are selected to construct the corresponding nonparametric scatter matrices. By discovering the local structure, NMFA seeks to find a projection that maximizes the minimum extra-class distance and minimizes the maximum intra-class distance among the samples of single class simultaneously. The proposed method is applied to face recognition and is examined using the ORL and AR face image databases. Experiments show that our proposed method consistently outperforms some state-of-the-art techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belhumeur, P.N., Hespanha, J.P., Kriengman, D.J.: Eigenfaces vs Fisher faces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Fukunaga, K., Mantock, J.M.: Nonparametric discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 5(6), 671–678 (1983)
Qiu, X.P., Wu, L.D.: Face recognition by stepwise nonparametric margin maximum criterion. In: Proc. Int. Conf. Computer Vision, Beijing, China (2005)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using Laplacian faces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–50 (2007)
Zhang, T., Yang, J., Wang, H., Du, C.: Maximum variance projection for face recognition. Opt. Eng. 46(6), 1–8 (2007)
Martinez, A.M., Benavente, R.: The AR Face CVC Technical Report #24 (June 1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, J., Yang, J. (2010). Nonparametric Marginal Fisher Analysis for Feature Extraction. In: Huang, DS., Zhang, X., Reyes GarcÃa, C.A., Zhang, L. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2010. Lecture Notes in Computer Science(), vol 6216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14932-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-14932-0_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14931-3
Online ISBN: 978-3-642-14932-0
eBook Packages: Computer ScienceComputer Science (R0)