Abstract
Graph matching is an essential problem in computer vision and machine learning. In this paper, we introduce a random walk view on the problem and propose a robust graph matching algorithm against outliers and deformation. Matching between two graphs is formulated as node selection on an association graph whose nodes represent candidate correspondences between the two graphs. The solution is obtained by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph. Our algorithm achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences. In a practical sense, our work is of particular importance since the real-world matching problem is made difficult by the presence of noise and outliers. Extensive and comparative experiments demonstrate that it outperforms the state-of-the-art graph matching algorithms especially in the presence of outliers and deformation.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. In: IJPRAI (2004)
Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR (2005)
Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005)
Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS (2006)
Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)
Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008)
Duchenne, O., Bach, F., Kweon, I., Ponce, J.: A tensor-based algorithm for high-order graph matching. In: CVPR (2009)
Leordeanu, M., Herbert, M.: An integer projected fixed point method for graph matching and map inference. In: NIPS (2009)
Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the ACM (1999)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report, Stanford University (1998)
Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW (2002)
Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. PAMI (2003)
Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. PAMI (1996)
van Wyk, B.J., van Wyk, M.A.: A pocs-based graph matching algorithm. PAMI (2004)
Lee, J., Cho, M., Lee, K.M.: Graph matching algorithm using data-driven markov chain monte carlo sampling. In: ICPR (2010)
Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using random walks. PAMI (2005)
Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph matching. In: IJPRAI (2004)
Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Statistics (1964)
Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathematics (2003)
Seneta, E.: Non negative matrices and markov chains. Springer, Heidelberg (2006)
Munkres, J.: Algorithms for the assignment and transportation problems. SIAM, Philadelphia (1957)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC (2002)
Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)
Cho, M., Lee, J., Lee, K.M.: Feature correspondence and deformable object matching via agglomerative correspondence clustering. In: ICCV (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cho, M., Lee, J., Lee, K.M. (2010). Reweighted Random Walks for Graph Matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15555-0_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-15555-0_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15554-3
Online ISBN: 978-3-642-15555-0
eBook Packages: Computer ScienceComputer Science (R0)