Abstract
In order to analyze the distribution of mind-sets (collections of evaluations) in a group, a hierarchical clustering of decision tables has been examined. By the method, we know clusters of mind-set but the clusters are not always optimal in some criterion. In this paper, we develop non-hierarchical clustering techniques for decision tables. In order to treat positive and negative evaluations to a common profile, we use a vector of rough membership values to represent individual opinion to a profile. Using rough membership values, we develop a K-means method as well as fuzzy c-means methods for clustering decision tables. We examined the proposed methods in clustering real world decision tables.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Enomoto, Y., Harada, T., Inoue, T., Mori, N.: Analysis of Choice for Audio Products Using Annexation Reduct System. The Bull. of Jpn. Soc. for the Sci. of Des. 49(5), 11–20 (2003) (in Japanese)
Inuiguchi, M.: A Multi-Agent Rough Set Model toward Group Decision Analysis. Kansei Eng. Int. 6(3), 33–40 (2006)
Inuiguchi, M.: Three Approaches to Rule Induction from Multiple Decision Tables. In: Proc. of the 12th Czech-Jpn Semin. on Data Anal. and Dec. Mak. under Uncertain., pp. 41–50 (2009)
Inuiguchi, M., Furudono, T.: Clustering Analysis of Individual Opinions Given by Decision Tables. In: Proc. of the 10th Czech-Jpn Semin. on Data Anal. and Dec. Mak. under Uncertain., pp. 41–53 (2007)
Inuiguchi, M., Miyajima, T.: Variable Precision Rough Set Approach to Multiple Decision Tables. In: Ślȩzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 304–313. Springer, Heidelberg (2005)
Itou, K., Enomoto, Y., Harada, T.: Influence of Annexation Order to Plural Annexation Condition Parts of Decision Rules. In: Proc. of 19th Fuzzy Syst. Symp., pp. 529–532 (2003) (in Japanese)
Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering: Methods in c-Means Clustering with Applications. Springer, Heidelberg (2008)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston (1991)
Yamamoto, S., Inuiguchi, M.: A Variable Precision Dominance-based Rough Set Approach to Multiple Decision Tables. In: Inuiguchi, M., et al. (eds.) Proc. of MDAI 2009, pp. 153–164 (2009), CD-ROM
Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Inuiguchi, M., Enomoto, R., Kusunoki, Y. (2010). Non-hierarchical Clustering of Decision Tables toward Rough Set-Based Group Decision Aid. In: Torra, V., Narukawa, Y., Daumas, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2010. Lecture Notes in Computer Science(), vol 6408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16292-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-16292-3_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16291-6
Online ISBN: 978-3-642-16292-3
eBook Packages: Computer ScienceComputer Science (R0)