Skip to main content

Dimensionality Reduction for Classification through Visualisation Using L1SNE

  • Conference paper
AI 2010: Advances in Artificial Intelligence (AI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6464))

Included in the following conference series:

  • 1862 Accesses

Abstract

Dimensionality Reduction algorithms have wide precedent for use in preprocessing for classification problems. This paper presents a new algorithm, based on a modification to Stochastic Neighbour Embedding and t-Distributed SNE to use the Laplacian distribution instead of, respectively, the Gaussian Distribution and a mismatched pair of the Gaussian Distribution and Student’s t-Distribution. Experimental results are presented to demonstrate that this modification yields improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  2. Buchala, S., Davey, N., Frank, R.J., Gale, T.M.: Dimensionality reduction of face images for gender classifcation (2004)

    Google Scholar 

  3. Caron, F., Doucet, A.: Sparse bayesian nonparametric regression. pp. 88–95 (2008)

    Google Scholar 

  4. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  5. Gao, J.: Robust L1 principal component analysis and its Bayesian variational inference. Neural Computation 20(2), 555–572 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, Y., Kwan, P.W.H., Hou, K.X.: Visualization of protein structure relationships using constrained twin kernel embedding (2008)

    Google Scholar 

  7. Hinton, G., Roweis, S.: Stochastic neighbour embedding. In: Roweis, S. (ed.) Advances in Neural Information Processing Systems, vol. (15), pp. 833–840. MIT Press, Cambridge (2003)

    Google Scholar 

  8. Huang, S., Ward, M., Rundensteiner, E.: Exploration of dimensionality reduction for text visualisation. In: Proceedings of the Third Internations Conference on Coordinated and Multiple Views in Exploratory Visualisation (2005)

    Google Scholar 

  9. Jolliffe, I.: Principal component analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  10. Jolliffe, M.: Principal Component Analysis. Springer, New York (1986)

    Book  MATH  Google Scholar 

  11. Kentsis, A., Gindin, T., Mezei, M., Osman, R.: Calculation of the free energy and cooperativity of protein folding (May 2007)

    Google Scholar 

  12. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. Journal of Machine Learning Research 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Lima, A., Zen, H., Nankaku, Y., Tokuda, K., Miyajima, C., Kitamura, T.: On the use of kernel pca for feature extraction in speech recognition (2004)

    Google Scholar 

  14. Ng, A.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of Intl. Conf. Machine Learning (2004)

    Google Scholar 

  15. Oliveria, S., Zaïane, O.: Privacy-preserving clustering by object similarity-based representation and dimensionality reduction transformation. In: Workshop on privacy and security aspects of data mining, pp. 21–30 (2004)

    Google Scholar 

  16. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

  17. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000)

    Article  Google Scholar 

  18. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal. Statist. Soc B. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  19. van der Maaten, L., Hinton, G.: Visualising data using t-sne (2008)

    Google Scholar 

  20. van der Maaten, L., Postma, E.O., van den Hick, H.J.: Dimensionality reduction: A comparative review (2008)

    Google Scholar 

  21. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space. SIAM Journal on Scientific Computing 26(1), 313–338 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. Technical report, Statistics Department, Stanford University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cook, L.V., Gao, J. (2010). Dimensionality Reduction for Classification through Visualisation Using L1SNE. In: Li, J. (eds) AI 2010: Advances in Artificial Intelligence. AI 2010. Lecture Notes in Computer Science(), vol 6464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17432-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17432-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17431-5

  • Online ISBN: 978-3-642-17432-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics