Abstract
Dimensionality Reduction algorithms have wide precedent for use in preprocessing for classification problems. This paper presents a new algorithm, based on a modification to Stochastic Neighbour Embedding and t-Distributed SNE to use the Laplacian distribution instead of, respectively, the Gaussian Distribution and a mismatched pair of the Gaussian Distribution and Student’s t-Distribution. Experimental results are presented to demonstrate that this modification yields improvement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)
Buchala, S., Davey, N., Frank, R.J., Gale, T.M.: Dimensionality reduction of face images for gender classifcation (2004)
Caron, F., Doucet, A.: Sparse bayesian nonparametric regression. pp. 88–95 (2008)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)
Gao, J.: Robust L1 principal component analysis and its Bayesian variational inference. Neural Computation 20(2), 555–572 (2008)
Guo, Y., Kwan, P.W.H., Hou, K.X.: Visualization of protein structure relationships using constrained twin kernel embedding (2008)
Hinton, G., Roweis, S.: Stochastic neighbour embedding. In: Roweis, S. (ed.) Advances in Neural Information Processing Systems, vol. (15), pp. 833–840. MIT Press, Cambridge (2003)
Huang, S., Ward, M., Rundensteiner, E.: Exploration of dimensionality reduction for text visualisation. In: Proceedings of the Third Internations Conference on Coordinated and Multiple Views in Exploratory Visualisation (2005)
Jolliffe, I.: Principal component analysis, 2nd edn. Springer, New York (2002)
Jolliffe, M.: Principal Component Analysis. Springer, New York (1986)
Kentsis, A., Gindin, T., Mezei, M., Osman, R.: Calculation of the free energy and cooperativity of protein folding (May 2007)
Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. Journal of Machine Learning Research 6, 1783–1816 (2005)
Lima, A., Zen, H., Nankaku, Y., Tokuda, K., Miyajima, C., Kitamura, T.: On the use of kernel pca for feature extraction in speech recognition (2004)
Ng, A.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of Intl. Conf. Machine Learning (2004)
Oliveria, S., Zaïane, O.: Privacy-preserving clustering by object similarity-based representation and dimensionality reduction transformation. In: Workshop on privacy and security aspects of data mining, pp. 21–30 (2004)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000)
Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal. Statist. Soc B. 58, 267–288 (1996)
van der Maaten, L., Hinton, G.: Visualising data using t-sne (2008)
van der Maaten, L., Postma, E.O., van den Hick, H.J.: Dimensionality reduction: A comparative review (2008)
Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space. SIAM Journal on Scientific Computing 26(1), 313–338 (2005)
Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. Technical report, Statistics Department, Stanford University (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cook, L.V., Gao, J. (2010). Dimensionality Reduction for Classification through Visualisation Using L1SNE. In: Li, J. (eds) AI 2010: Advances in Artificial Intelligence. AI 2010. Lecture Notes in Computer Science(), vol 6464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17432-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-17432-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17431-5
Online ISBN: 978-3-642-17432-2
eBook Packages: Computer ScienceComputer Science (R0)