Skip to main content

Factors Impacting Performance of Multithreaded Sparse Triangular Solve

  • Conference paper
High Performance Computing for Computational Science – VECPAR 2010 (VECPAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6449))

  • 1578 Accesses

Abstract

As computational science applications grow more parallel with multi-core supercomputers having hundreds of thousands of computational cores, it will become increasingly difficult for solvers to scale. Our approach is to use hybrid MPI/threaded numerical algorithms to solve these systems in order to reduce the number of MPI tasks and increase the parallel efficiency of the algorithm. However, we need efficient threaded numerical kernels to run on the multi-core nodes in order to achieve good parallel efficiency. In this paper, we focus on improving the performance of a multithreaded triangular solver, an important kernel for preconditioning. We analyze three factors that affect the parallel performance of this threaded kernel and obtain good scalability on the multi-core nodes for a range of matrix sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lin, P., Shadid, J., Sala, M., Tuminaro, R., Hennigan, G., Hoekstra, R.: Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling. Journal of Computational Physics 228(17), 6250–6267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hennigan, G., Hoekstra, R., Castro, J., Fixel, D., Shadid, J.: Simulation of neutron radiation damage in silicon semiconductor devices. Technical Report SAND2007-7157, Sandia National Laboratories (2007)

    Google Scholar 

  3. Lin, P.T., Shadid, J.N.: Performance of an MPI-only semiconductor device simulator on a quad socket/quad core InfiniBand platform. Technical Report SAND2009-0179, Sandia National Laboratories (2009)

    Google Scholar 

  4. Li, X.S., Shao, M., Yamazaki, I., Ng, E.G.: Factorization-based sparse solvers and preconditioners. Journal of Physics: Conference Series 180(1), 012015 (2009)

    Google Scholar 

  5. Saltz, J.H.: Aggregation methods for solving sparse triangular systems on multiprocessors. SIAM Journal on Scientific and Statistical Computing 11(1), 123–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rothberg, E., Gupta, A.: Parallel iccg on a hierarchical memory multiprocessor – addressing the triangular solve bottleneck. Parallel Computing 18(7), 719–741 (1992)

    Article  MATH  Google Scholar 

  7. Mayer, J.: Parallel algorithms for solving linear systems with sparse triangular matrices. Computing 86(4), 291–312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, T.A.: The University of Florida Sparse Matrix Collection (1994), Matrices found at http://www.cise.ufl.edu/research/sparse/matrices/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolf, M.M., Heroux, M.A., Boman, E.G. (2011). Factors Impacting Performance of Multithreaded Sparse Triangular Solve. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds) High Performance Computing for Computational Science – VECPAR 2010. VECPAR 2010. Lecture Notes in Computer Science, vol 6449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19328-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19328-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19327-9

  • Online ISBN: 978-3-642-19328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics