Abstract
Proper selection of variables is necessary when dealing with large number of input dimensions in regression problems. In the paper, we investigate the behaviour of landscape that is formed when using Delta test as the optimization criterion. We show that simple and greedy Forward-backward selection procedure with multiple restarts gives optimal results for data sets with large number of samples. An improvement to multistart Forward-backward selection is presented that uses information from previous iterations in the form of long-term memory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 758–770. Springer, Heidelberg (2005)
Eirola, E., Liitiäinen, E., Lendasse, A., Corona, F., Verleysen, M.: Using the Delta Test for Variable Selection. In: European Symposium on Artificial Neural Networks 2008, pp. 25–30 (2008)
Guillén, A., Sovilj, D., Mateo, F., Rojas, I., Lendasse, A.: Minimizing the Delta Test for Variable Selection in Regression Problems. International Journal of High Performance Systems Architecture 1, 269–281 (2008)
Glover, F., Laguna, F.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)
Fernandes, E.R., Ribeiro, C.C.: Using an adaptive memory strategy to improve a multistart heuristic for sequencing by hybridization. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 4–15. Springer, Heidelberg (2005)
Fleurent, C., Glover, F.: Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory. INFORMS J. on Computing 11, 195–197 (1999)
Liitiäinen, E., Corona, F., Lendasse, A.: Nearest neighbor distributions and noise variance estimation. In: European Symposium on Artificial Neural Networks 2007, pp. 67–72 (2007)
Resende, M.G.C.: Greedy randomized adaptive search procedures (grasp). Technical report, AT&T Labs Research (1998)
Morrison, R.W., De Jong, K.A.: Measurement of population diversity. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, p. 31. Springer, Heidelberg (2002)
Jansen, T.: On the analysis of dynamic restart strategies for evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, p. 33. Springer, Heidelberg (2002)
James, T., Rego, C., Glover, F.: Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem. IEEE Transactions on Systems, Man and Cybernetics 39, 579–596 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sovilj, D. (2011). Multistart Strategy Using Delta Test for Variable Selection. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-21738-8_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21737-1
Online ISBN: 978-3-642-21738-8
eBook Packages: Computer ScienceComputer Science (R0)