Skip to main content

On the Integrality Gap of the Subtour LP for the 1,2-TSP

  • Conference paper
LATIN 2012: Theoretical Informatics (LATIN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7256))

Included in the following conference series:

  • 995 Accesses

Abstract

In this paper, we study the integrality gap of the subtour LP relaxation for the traveling salesman problem in the special case when all edge costs are either 1 or 2. For the general case of symmetric costs that obey triangle inequality, a famous conjecture is that the integrality gap is 4/3. Little progress towards resolving this conjecture has been made in thirty years. We conjecture that when all edge costs c ij  ∈ {1,2}, the integrality gap is 10/9. We show that this conjecture is true when the optimal subtour LP solution has a certain structure. Under a weaker assumption, which is an analog of a recent conjecture by Schalekamp, Williamson and van Zuylen, we show that the integrality gap is at most 7/6. When we do not make any assumptions on the structure of the optimal subtour LP solution, we can show that inegrality gap is at most 19/15 ≈ 1.267 < 4/3; this is the first bound on the integrality gap of the subtour LP strictly less than 4/3 known for an interesting special case of the TSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-connected graphs (2011), http://arxiv.org/abs/1101.5586

  2. Balinski, M.L.: Integer programming: Methods, uses, computation. Management Science 12, 253–313 (1965)

    Article  MathSciNet  Google Scholar 

  3. Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1,2)-TSP. In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 641–648 (2006)

    Google Scholar 

  4. Bläser, M., Shankar Ram, L.: An Improved Approximation Algorithm for TSP with Distances One and Two. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 504–515. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Boyd, S., Carr, R.: Finding low cost TSP and 2-matching solutions using certain half-integer subtour vertices. Discrete Optimization 8(4), 525–539 (2011), prior version, http://www.site.uottawa.ca/~sylvia/recentpapers/halftri.pdf (accessed June 27, 2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: TSP on Cubic and Subcubic Graphs. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 65–77. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem. Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976)

    Google Scholar 

  8. IBM ILOG CPLEX 12.1 (2009)

    Google Scholar 

  9. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. Operations Research 2, 393–410 (1954)

    Article  MathSciNet  Google Scholar 

  10. Goemans, M.X.: Worst-case comparison of valid inequalities for the TSP. Mathematical Programming 69, 335–349 (1995)

    MathSciNet  MATH  Google Scholar 

  11. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–97 (1981)

    MathSciNet  Google Scholar 

  12. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Proceedings of the 52th Annual Symposium on Foundations of Computer Science (2011)

    Google Scholar 

  13. Mucha, M.: 13/9-approximation for graphic TSP. In: 29th International Symposium on Theoretical Aspects of Computer Science (2012)

    Google Scholar 

  14. Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52th Annual Symposium on Foundations of Computer Science (2011)

    Google Scholar 

  15. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Mathematics of Operations Research 18, 1–11 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schalekamp, F., Williamson, D.P., van Zuylen, A.: A proof of the Boyd-Carr conjecture. In: Proceedings of the 23nd ACM-SIAM Symposium on Discrete Algorithms (2012)

    Google Scholar 

  17. Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp TSP bound: A monotonicity property with application. Information Processing Letters 35, 281–285 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Williamson, D.P.: Analysis of the Held-Karp Heuristic for the Traveling Salesman Problem. Master’s thesis. MIT, Cambridge, MA (June 1990), also appears as Tech. Report MIT/LCS/TR-479

    Google Scholar 

  19. Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Mathematical Programming Study 13, 121–134 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qian, J., Schalekamp, F., Williamson, D.P., van Zuylen, A. (2012). On the Integrality Gap of the Subtour LP for the 1,2-TSP. In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29344-3_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29343-6

  • Online ISBN: 978-3-642-29344-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics