Abstract
This work is concerned with the development of numerical methods and algorithms for solving the inverse problem for parameter identification from over-determined data in Kirchhoff plate equations. A technique called Method of Variational Imbedding is used for solving the inverse problem. The original inverse problem is replaced by a minimization problem. The Euler-Lagrange equations comprise a higher-order system of equations for the solution of the original equation and for the coefficients. In the present work, difference scheme and numerical algorithm for solving the Euler-Lagrange system are proposed. Results for different values of the governing parameters and the physical relevance are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Christov, C.I.: A method for identification of homoclinic trajectories. In: Proc. 14-th Spring Conf., Sunny Beach, Union of Bulg. Mathematicians, Sofia, Bulgaria (1985)
Christov, C.I., Marinov, T.T.: Identification of heat-conduction coefficient via method of variational imbedding. Mathematics and Computer Modeling 27(3), 109–116 (1998)
Hadamard, J.: Le Probleme de Cauchy et les Equations aux Derivatives Partielles Lineares Hyperboliques. Hermann, Paris (1932)
Lattès, R., Lions, J.L.: Mèthode de quasi-reversibilite et applications. Dunod, Paris (1967)
Lesnic, D., Elliott, L., Ingham, D.B.: Analysis of coefficient identification problems associated to the inverse Euler-Bernoulli beam theory. IMA J. of Applied Math. 62, 101–116 (1999)
Marinov, T.T., Christov, C.I.: Identification the unknown coefficient in Ordinary Differential Equations via Method of Variational Imbedding. In: Deville, M., Owens, R. (eds.) 16th IMACS World Congress 2000 Proceedings, paper 134–2. Rutgers University, New Brunswick (2000) ISBN 3-9522075-1-9
Marinov, T.T., Christov, C.I., Marinova, R.S.: Novel numerical approach to solitary-wave solutions identification of Boussinesq and Korteweg-de Vries equations. Int. J. of Bifurcation and Chaos 15(2), 557–565 (2005)
Marinov, T.T., Marinova, R.S., Christov, C.I.: Coefficient Identification in Elliptic Partial Differential Equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 372–379. Springer, Heidelberg (2006)
Marinov, T.T., Vatsala, A.: Inverse Problem for Coefficient Identification in Euler-Bernoulli Equation. Computers and Mathematics with Applications 56(2), 400–410 (2008)
Tikhonov, A.N., Arsenin, V.: Methods for Solving Incorrect Problems. Nauka, Moscow (1974)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marinov, T.T., Marinova, R. (2012). An Inverse Problem for the Stationary Kirchhoff Equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2011. Lecture Notes in Computer Science, vol 7116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29843-1_68
Download citation
DOI: https://doi.org/10.1007/978-3-642-29843-1_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29842-4
Online ISBN: 978-3-642-29843-1
eBook Packages: Computer ScienceComputer Science (R0)