Abstract
Conformational changes frequently occur when proteins interact with other proteins. How to detect such changes in silico is a major problem. Existing methods for docking with conformational changes remain time-consuming, and they solve the problem only for a small portion of protein-protein complexes accurately. This work presents a more accurate method (FlexDoBi) for docking with conformational changes. FlexDoBi generates the possible conformational changes of the interface residues that transform the proteins from their unbound states to bound states. Based on the generated conformational changes, multi-dimensional scaling is performed to construct candidates for the bound structure. We develop the new energy items for determining the orientation of proteins and selecting of plausible conformational changes. Experimental results illustrate that FlexDoBi achieves better results than other methods for the same purpose. On 20 complexes, we obtained an average iRMSD of 1.55Å, which compares favorably with the average iRMSD of 1.94Å in the predictions from FiberDock. Compared with ZDOCK, our results are of 0.35Å less in average iRMSD on the medium difficulty group, and 0.81Å less on the difficulty group.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alcaro, S., Gasparrini, F., Incani, O., Caglioti, L., Pierini, M., Villani, C.: “quasi flexible” automatic docking processing for studying stereoselective recognition mechanisms, part 2: Prediction of deltadeltag of complexation and 1h-nmr noe correlation. Journal of Computational Chemistry 28(6), 1119–1128 (2007)
Bradford, J.R., Westhead, D.R.: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8), 1487–1494 (2005)
Brown, J.B., Bahadur, D., Tomita, E., Akutsu, T.: Multiple methods for protein side chain packing using maximum weight cliques. Genome Informatics 3(12), 191–200 (2006)
Chen, R., Li, L., Weng, Z.: Zdock: an initial-stage protein-docking algorithm. Proteins 52, 80–87 (2003)
Dominguez, C., Boelens, R., Bonvin, A.M.J.J.: Haddock: a protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society 125, 1731–1737 (2003)
Eswar, N., Marti-Renom, M.A., Webb, B., Madhusudhan, M.S., Eramian, D., Shen, M., Pieper, U., Sali, A.: Comparative protein structure modeling with modeller. Current Protocols in Bioinformatics Supp. 15 (2006)
Fernández-Recio, J., Totrov, M., Abagyan, R.: Identification of protein-protein interaction sites from docking energy landscapes. Journal of Molecular Biology 335(3), 843–865 (2004)
Guo, F., Li, S.C., Wang, L.: P-Binder: A System for the Protein-Protein Binding Sites Identification. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds.) ISBRA 2012. LNCS, vol. 7292, pp. 127–138. Springer, Heidelberg (2012)
Heifetz, A., Katchalski-Katzir, E., Eisenstein, M.: Electrostatics in protein-protein docking. Protein Science 11(3), 571–587 (2002)
Holtby, D., Li, S.C., Li, M.: LoopWeaver – Loop Modeling by the Weighted Scaling of Verified Proteins. In: Chor, B. (ed.) RECOMB 2012. LNCS, vol. 7262, pp. 113–126. Springer, Heidelberg (2012)
Hwang, H., Vreven, T., Janin, J., Weng, Z.: Protein-protein docking benchmark version 4.0. Proteins 78, 3111–3114 (2010)
Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)
Konc, J., Janežič, D.: Probis algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26(9), 1160–1168 (2010)
Krivov, G.G., Shapovalov, M.V., Dunbrack, R.L.: Improved prediction of protein side-chain conformations with scwrl4. Proteins 77(4), 778–795 (2009)
de Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Recent Developments in Statistics, pp. 133–146. North Holland Publishing Company (1977)
Lindahl, E., Hess, B., Spoel, D.: Gromacs 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling 7(8), 306–317 (2001)
Liu, S., Gao, Y., Vakser, I.: Dockground protein-protein docking decoy set. Bioinformatics 24, 2634–2635 (2008)
Lyskov, S., Gray, J.: The rosettadock server for local protein-protein docking. Nucleic Acids Research 36, W233–W238 (2008)
Mashiach, E., Nussinov, R., Wolfson, H.J.: Fiberdock: Flexible induced-fit backbone refinement in molecular docking. Proteins 78(6), 1503–1519 (2009)
Neuvirth, H., Raz, R., Schreiber, G.: Promate: a structure based prediction program to identify the location of protein-protein binding sites. Journal of Molecular Biology 338, 181–199 (2004)
Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: Geometry-based flexible and symmetric protein docking. Proteins 60(2), 224–231 (2005)
Schneidman-Duhovny, D., Nussinov, R., Wolfson, H.J.: Automatic prediction of protein interactions with large scale motion. Proteins 69, 764–773 (2007)
Shulman-Peleg, A., Nussinov, R., Wolfson, H.J.: Siteengines: recognition and comparison of binding sites and protein-protein interfaces. Nucleic Acids Research 1(33), W337–W341 (2005)
Wang, G., Dunbrack, R.L.: Pisces: a protein sequence culling server. Bioinformatics 19(2), 1589–1591 (2003)
Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing. Journal of the ACM 53, 533–557 (2006)
Yang, Y., Zhou, Y.: Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72, 793–803 (2008)
Zhang, C.: Extracting contact energies from protein structures: A study using a simplified model. Proteins 31(3), 299–308 (1998)
Zhang, C., Vasmatzis, G., Cornette, J.L., DeLisi, C.: Determination of atomic desolvation energies from the structures of crystallized protein. Journal of Molecular Biology 267(3), 707–726 (1997)
Zhang, J., Wang, Q., Barz, B., He, Z., Kosztin, I., Shang, Y., Xu, D.: Mufold: A new solution for protein 3d structure prediction. Proteins 78, 1137–1152 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, F., Li, S.C., Ma, W., Wang, L. (2013). Detecting Protein Conformational Changes in Interactions via Scaling Known Structures. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-37195-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37194-3
Online ISBN: 978-3-642-37195-0
eBook Packages: Computer ScienceComputer Science (R0)