Abstract
Human reidentification is to match persons observed in non-overlapping camera views with visual features for inter-camera tracking. The ambiguity increases with the number of candidates to be distinguished. Simple temporal reasoning can simplify the problem by pruning the candidate set to be matched. Existing approaches adopt a fixed metric for matching all the subjects. Our approach is motivated by the insight that different visual metrics should be optimally learned for different candidate sets. We tackle this problem under a transfer learning framework. Given a large training set, the training samples are selected and reweighted according to their visual similarities with the query sample and its candidate set. A weighted maximum margin metric is online learned and transferred from a generic metric to a candidate-set-specific metric. The whole online reweighting and learning process takes less than two seconds per candidate set. Experiments on the VIPeR dataset and our dataset show that the proposed transferred metric learning significantly outperforms directly matching visual features or using a single generic metric learned from the whole training set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gheissari, N., Sebastian, T.B., Rittscher, J., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR (2006)
Schwartz, W., Davis, L.: Learning discriminative appearance-based models using partial least sqaures. In: Proc. XXII SIBGRAPI (2009)
Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR (2010)
Zheng, W., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: CVPR (2011)
Park, U., Jain, A., Kitahara, I., Kogure, K., Hagita, N.: Vise: Visual search engine using multiple networked cameras. In: ICPR (2006)
van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: ICCV (2007)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A 2, 1160–1169 (1985)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on PAMI, 971–987 (2002)
Torralba, A., Murphy, K., Freeman, W., Rubin, M.: Context-based vision system for place and object recognition. In: ICCV (2003)
Porikli, F.: Inter-camera color calibration by correlation model function. In: ICIP (2003)
Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: CVPR (2005)
Gilbert, A., Bowden, R.: Tracking Objects Across Cameras by Incrementally Learning Inter-camera Colour Calibration and Patterns of Activity. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 125–136. Springer, Heidelberg (2006)
Prosser, B., Gong, S., Xiang, T.: Multi-camera matching using bi-directional cumulative brightness transfer function. In: BMVC (2008)
Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)
Shan, Y., Sawhney, H.S., Kumar, R.: Unsupervised Learning of Discriminative Edge Measures for Vehicle Matching between Nonoverlapping Cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 700–711 (2008)
Lin, Z., Davis, L.S.: Learning Pairwise Dissimilarity Profiles for Appearance Recognition in Visual Surveillance. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 23–34. Springer, Heidelberg (2008)
Prosser, B., Zheng, W., Gong, S., Xiang, T., Mary, Q.: Person re-identification by support vector ranking. In: BMVC (2010)
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)
Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition and tracking (2007)
Dai, W., Yang, Q., Xue, G., Yu, Y.: Boosting for transfer learning. In: Proc. of ICML (2007)
Wu, X., Srihari, R.: Incorporating prior knowledge with weighted margin support vector machines. In: Proc. of SIGKDD (2004)
Jiang, W., Zavesky, E., Chang, S., Loui, A.: Cross-domain learning methods for high-level visual concept classification. In: ICIP (2008)
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting Visual Category Models to New Domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)
Yao, Y., Doretto, G.: Boosting for transfer learning with multiple sources. In: CVPR (2010)
Qi, G., Aggarwal, C., Huang, T.: Towards semantic knowledge propagation from text corpus to web images. In: Proc. of WWW (2011)
Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive svms. In: Proc. of ACM Multimedia (2007)
Duan, L., Tsang, I.W., Xu, D., Maybank, S.J.: Domain transfer svm for video concept detection. In: CVPR (2009)
Qi, G., Aggarwal, C., Rui, Y., Tian, Q., Chang, S., Huang, T.: Towards cross-category knowledge propagation for learning visual concepts. In: CVPR (2011)
Zhan, D.C., Li, M., Li, Y.F., Zhou, Z.H.: Learning instance specific distances using metric propagation. In: Proc. of ICML, p. 154 (2009)
Sande, K., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. on PAMI 32, 1582–1596 (2010)
Liu, T., Moore, A.W., Gray, A.G., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proc. of NIPS (2004)
Fletcher, R.: Semi-definite matrix constraints in optimization. SIAM J. Control Optim. 23, 493–513 (1985)
Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin distance metric learning for large margin. Journal of Machine Learning Research 10, 207–244 (2009)
Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer (2008)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1–122 (2011)
Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proc. of ICML (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, W., Zhao, R., Wang, X. (2013). Human Reidentification with Transferred Metric Learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-37331-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37330-5
Online ISBN: 978-3-642-37331-2
eBook Packages: Computer ScienceComputer Science (R0)