Abstract
Adjoint pairs or adjoint triples defined on lattices have proven to be a useful tool when working in fuzzy formal concept analysis. This paper shows that adjoint pairs and triples can play as well an important role within the framework of multilattices, especially in order to form the Galois connections needed to build concept multilattices.
Partially supported by the Spanish Science Ministry projects TIN2009-14562-C05-01, TIN2009-14562-C05-03, TIN12-39353-C04-01 and TIN12-39353-C04-04, and by Junta de Andalucía project P09-FQM-5233.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bělohlávek, R.: Lattice generated by binary fuzzy relations (extended abstract). In: 4th Intl. Conf. on Fuzzy Sets Theory and Applications, p. 11 (1998)
Bělohlávek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic 128, 277–298 (2004)
Benado, M.: Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier, II. Théorie des multistructures. Czechoslovak Mathematical Journal 5(80), 308–344 (1955)
Burusco, A., Fuentes-González, R.: The study of L-fuzzy concept lattice. Mathware & Soft Computing 3, 209–218 (1994)
Cordero, P., Gutiérrez, G., Martínez, J., de Guzmán, I.P.: A new algebraic tool for automatic theorem provers. Annals of Mathematics and Artificial Intelligence 42(4), 369–398 (2004)
Cornejo, M., Medina, J., Ramírez, E.: A comparative study of adjoint triples. Fuzzy Sets and Systems 211, 1–14 (2012)
Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: Termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 252–265. Springer, Heidelberg (2004)
Damásio, C., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with imperfect information: Applications and query procedure. Journal of Applied Logic 5, 435–458 (2007)
Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002)
Diday, E., Emilion, R.: Maximal and stochastic Galois lattices. Discrete Applied Mathematics 127(2), 271–284 (2003)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer (1999)
Georgescu, G., Popescu, A.: Concept lattices and similarity in non-commutative fuzzy logic. Fundamenta Informaticae 53(1), 23–54 (2002)
Hansen, D.: An axiomatic characterization of multilattices. Discrete Mathematics 1, 99–101 (1981)
Krajči, S.: The basic theorem on generalized concept lattice. In: Snásel, V., Bělohlávek, R. (eds.) International Workshop on Concept Lattices and their Applications, CLA 2004, pp. 25–33 (2004)
Krajči, S.: A generalized concept lattice. Logic Journal of IGPL 13(5), 543–550 (2005)
Martínez, J., Gutiérrez, G., de Guzmán, I., Cordero, P.: Generalizations of lattices via non-deterministic operators. Discrete Mathematics 295, 107–141 (2005)
Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Fuzzy logic programming via multilattices. Fuzzy Sets and Systems 158, 674–688 (2007)
Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Relating generalized concept lattices with concept lattices for non-commutative conjunctors. Applied Mathematics Letters 21(12), 1296–1300 (2008)
Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems 160(2), 130–144 (2009)
Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)
Ruiz-Calviño, J., Medina, J.: Fuzzy formal concept analysis via multilattices: First prospects and results. In: The 9th International Conference on Concept Lattices and Their Applications (CLA 2012), pp. 69–79 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Medina-Moreno, J., Ojeda-Aciego, M., Ruiz-Calviño, J. (2013). Concept-Forming Operators on Multilattices. In: Cellier, P., Distel, F., Ganter, B. (eds) Formal Concept Analysis. ICFCA 2013. Lecture Notes in Computer Science(), vol 7880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38317-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-38317-5_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38316-8
Online ISBN: 978-3-642-38317-5
eBook Packages: Computer ScienceComputer Science (R0)