Skip to main content

Concept-Forming Operators on Multilattices

  • Conference paper
Formal Concept Analysis (ICFCA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7880))

Included in the following conference series:

  • 860 Accesses

Abstract

Adjoint pairs or adjoint triples defined on lattices have proven to be a useful tool when working in fuzzy formal concept analysis. This paper shows that adjoint pairs and triples can play as well an important role within the framework of multilattices, especially in order to form the Galois connections needed to build concept multilattices.

Partially supported by the Spanish Science Ministry projects TIN2009-14562-C05-01, TIN2009-14562-C05-03, TIN12-39353-C04-01 and TIN12-39353-C04-04, and by Junta de Andalucía project P09-FQM-5233.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 37.44
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 48.53
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bělohlávek, R.: Lattice generated by binary fuzzy relations (extended abstract). In: 4th Intl. Conf. on Fuzzy Sets Theory and Applications, p. 11 (1998)

    Google Scholar 

  2. Bělohlávek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic 128, 277–298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benado, M.: Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier, II. Théorie des multistructures. Czechoslovak Mathematical Journal 5(80), 308–344 (1955)

    MathSciNet  Google Scholar 

  4. Burusco, A., Fuentes-González, R.: The study of L-fuzzy concept lattice. Mathware & Soft Computing 3, 209–218 (1994)

    Google Scholar 

  5. Cordero, P., Gutiérrez, G., Martínez, J., de Guzmán, I.P.: A new algebraic tool for automatic theorem provers. Annals of Mathematics and Artificial Intelligence 42(4), 369–398 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornejo, M., Medina, J., Ramírez, E.: A comparative study of adjoint triples. Fuzzy Sets and Systems 211, 1–14 (2012)

    Article  Google Scholar 

  7. Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: Termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 252–265. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Damásio, C., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with imperfect information: Applications and query procedure. Journal of Applied Logic 5, 435–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002)

    Google Scholar 

  10. Diday, E., Emilion, R.: Maximal and stochastic Galois lattices. Discrete Applied Mathematics 127(2), 271–284 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer (1999)

    Google Scholar 

  12. Georgescu, G., Popescu, A.: Concept lattices and similarity in non-commutative fuzzy logic. Fundamenta Informaticae 53(1), 23–54 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Hansen, D.: An axiomatic characterization of multilattices. Discrete Mathematics 1, 99–101 (1981)

    Article  Google Scholar 

  14. Krajči, S.: The basic theorem on generalized concept lattice. In: Snásel, V., Bělohlávek, R. (eds.) International Workshop on Concept Lattices and their Applications, CLA 2004, pp. 25–33 (2004)

    Google Scholar 

  15. Krajči, S.: A generalized concept lattice. Logic Journal of IGPL 13(5), 543–550 (2005)

    Article  MATH  Google Scholar 

  16. Martínez, J., Gutiérrez, G., de Guzmán, I., Cordero, P.: Generalizations of lattices via non-deterministic operators. Discrete Mathematics 295, 107–141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Fuzzy logic programming via multilattices. Fuzzy Sets and Systems 158, 674–688 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Relating generalized concept lattices with concept lattices for non-commutative conjunctors. Applied Mathematics Letters 21(12), 1296–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems 160(2), 130–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  21. Ruiz-Calviño, J., Medina, J.: Fuzzy formal concept analysis via multilattices: First prospects and results. In: The 9th International Conference on Concept Lattices and Their Applications (CLA 2012), pp. 69–79 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medina-Moreno, J., Ojeda-Aciego, M., Ruiz-Calviño, J. (2013). Concept-Forming Operators on Multilattices. In: Cellier, P., Distel, F., Ganter, B. (eds) Formal Concept Analysis. ICFCA 2013. Lecture Notes in Computer Science(), vol 7880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38317-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38317-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38316-8

  • Online ISBN: 978-3-642-38317-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics