Skip to main content

On Randomized Fictitious Play for Approximating Saddle Points over Convex Sets

  • Conference paper
Computing and Combinatorics (COCOON 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Included in the following conference series:

  • 1901 Accesses

Abstract

Given two bounded convex sets X ⊆ ℝm and Y ⊆ ℝn, specified by membership oracles, and a continuous convex-concave function F:X×Y → ℝ, we consider the problem of computing an ε-approximate saddle point, that is, a pair (x *,y *) ∈ X×Y such that \(\sup_{y\in Y} F(x^*,y)\le \inf_{x\in X}F(x,y^*)+\varepsilon .\) Grigoriadis and Khachiyan (1995), based on a randomized variant of fictitious play, gave a simple algorithm for computing an ε-approximate saddle point for matrix games, that is, when F is bilinear and the sets X and Y are simplices. In this paper, we extend their method to the general case. In particular, we show that, for functions of constant “width”, an ε-approximate saddle point can be computed using O *(n + m) random samples from log-concave distributions over the convex sets X and Y. As a consequence, we obtain a simple randomized polynomial-time algorithm that computes such an approximation faster than known methods for problems with bounded width and when ε ∈ (0,1) is a fixed, but arbitrarily small constant. Our main tool for achieving this result is the combination of the randomized fictitious play with the recently developed results on sampling from convex sets. A full version of this paper can be found at http://arxiv.org/abs/1301.5290 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Hazan, E., Kale, S.: Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. In: FOCS, pp. 339–348 (2005)

    Google Scholar 

  2. Arora, S., Hazan, E., Kale, S.: Multiplicative weights method: a meta-algorithm and its applications. Technical report, Princeton University, USA (2006)

    Google Scholar 

  3. Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite programs. In: STOC, pp. 227–236 (2007)

    Google Scholar 

  4. Bartal, Y., Byers, J.W., Raz, D.: Fast, distributed approximation algorithms for positive linear programming with applications to flow control. SIAM J. Comput. 33(6), 1261–1279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown, G.W.: Iterative solution of games by fictitious play. In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, pp. 374–376 (1951)

    Google Scholar 

  6. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM 51(4), 540–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dantzig, G.B.: Linear Programming and extensions. Princeton University Press (1963)

    Google Scholar 

  8. Diedrich, F., Jansen, K.: Faster and simpler approximation algorithms for mixed packing and covering problems. Theor. Comput. Sci. 377, 181–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights. Games and Economic Behavior 29(1-2), 79–103 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grigoriadis, M.D., Khachiyan, L.G.: Approximate solution of matrix games in parallel. In: Advances in Optimization and Parallel Computing, pp. 129–136 (1992)

    Google Scholar 

  11. Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes for convex programs with many blocks and couplingconstraints. SIAM J. Optim. 4, 86–107 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grigoriadis, M.D., Khachiyan, L.G.: A sublinear-time randomized approximation algorithm for matrix games. Operations Research Letters 18(2), 53–58 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grigoriadis, M.D., Khachiyan, L.G.: Coordination complexity of parallel price-directive decomposition. Math. Oper. Res. 21(2), 321–340 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. In: FOCS, pp. 300–309 (1998)

    Google Scholar 

  15. Garg, N., Khandekar, R.: Fractional covering with upper bounds on the variables: Solving lPs with negative entries. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 371–382. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate max-min resource sharing for structured concave optimization. SIAM Journal on Optimization 41, 1081–1091 (2001)

    Article  MathSciNet  Google Scholar 

  17. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Algorithms and Combinatorics, vol. 2. Springer (1993)

    Google Scholar 

  18. Hazan, E.: Efficient Algorithms for Online Convex Optimization and Their Application. PhD thesis, Princeton University, USA (2006)

    Google Scholar 

  19. Hofbauer, J., Sorin, S.: Best response dynamics for continuous zero-sum games. Discrete and Continous Dynamical Systems – Series B 6(1), 215–224 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Jansen, K.: Approximation algorithms for mixed fractional packing and covering problems. In: IFIP TCS, pp. 223–236 (2004)

    Google Scholar 

  21. Kale, S.: Efficient Algorithms using the Multiplicative Weights Update Method. PhD thesis, Princeton University, USA (2007)

    Google Scholar 

  22. Khandekar, R.: Lagrangian Relaxation based Algorithms for Convex Programming Problems. PhD thesis, Indian Institute of Technology, Delhi (2004)

    Google Scholar 

  23. Kalai, A., Vempala, S.: Simulated annealing for convex optimization. Math. Oper. Res. 31(2), 253–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Koufogiannakis, C., Young, N.E.: Beating simplex for fractional packing and covering linear programs. In: FOCS, pp. 494–504 (2007)

    Google Scholar 

  25. Luby, M., Nisan, N.: A parallel approximation algorithm for positive linear programming. In: STOC, pp. 448–457 (1993)

    Google Scholar 

  26. Lovász, L., Vempala, S.: Hit-and-run from a corner. In: STOC, pp. 310–314 (2004)

    Google Scholar 

  27. Lovász, L., Vempala, S.: Fast algorithms for logconcave functions: Sampling, rounding, integration and optimization. In: FOCS, pp. 57–68 (2006)

    Google Scholar 

  28. Lovász, L., Vempala, S.: The geometry of logconcave functions and sampling algorithms. Random Struct. Algorithms 30(3), 307–358 (2007)

    Article  MATH  Google Scholar 

  29. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. In: FOCS, pp. 495–504 (1991)

    Google Scholar 

  31. Robinson, J.: An iterative method of solving a game. The Annals of Mathematics 54(2), 296–301 (1951)

    Article  MATH  Google Scholar 

  32. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series. Princeton University Press (1970)

    Google Scholar 

  33. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  34. Shapiro, H.N.: Note on a computation method in the theory of games. Communications on Pure and Applied Mathematics 11(4), 587–593 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vempala, S.S.: Geometric random walks: A survey. Combinatorial and Computational Geometry 52, 573–612 (2005)

    MathSciNet  Google Scholar 

  36. Washburn, A.R.: Two-Person Zero-Sum Games. INFORMS (2003)

    Google Scholar 

  37. Young, N.E.: Sequential and parallel algorithms for mixed packing and covering. In: FOCS, pp. 538–546 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elbassioni, K., Makino, K., Mehlhorn, K., Ramezani, F. (2013). On Randomized Fictitious Play for Approximating Saddle Points over Convex Sets. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics