Abstract
We investigate abelian repetitions in Sturmian words. We exploit a bijection between factors of Sturmian words and subintervals of the unitary segment that allows us to study the periods of abelian repetitions by using classical results of elementary Number Theory. If k m denotes the maximal exponent of an abelian repetition of period m, we prove that limsup \(k_{m}/m\ge \sqrt{5}\) for any Sturmian word, and the equality holds for the Fibonacci infinite word. We further prove that the longest prefix of the Fibonacci infinite word that is an abelian repetition of period F j , j > 1, has length F j ( F j + 1 + F j − 1 + 1) − 2 if j is even or F j ( F j + 1 + F j − 1 ) − 2 if j is odd. This allows us to give an exact formula for the smallest abelian periods of the Fibonacci finite words. More precisely, we prove that for j ≥ 3, the Fibonacci word f j has abelian period equal to F n , where \(n = \lfloor{j/2}\rfloor\) if \(j = 0, 1, 2\mod{4}\), or \(n = 1 + \lfloor{j/2}\rfloor\) if \( j = 3\mod{4}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.: Algorithms for Finding Patterns in Strings. In: van Leeuwen, J. (ed.) Handbook of Theoret. Comput. Sci, pp. 257–300. Elsevier Science Publishers B. V, Amsterdam (1990)
Avgustinovich, S., Karhumäki, J., Puzynina, S.: On abelian versions of Critical Factorization Theorem. RAIRO Theor. Inform. Appl. 46, 3–15 (2012)
Berstel, J.: Sturmian and episturmian words (a survey of some recent results). In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 23–47. Springer, Heidelberg (2007)
Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words: Christoffel Words and Repetition in Words. CRM monograph series, vol. 27. American Mathematical Society (2008)
Bucci, M., De Luca, A., Zamboni, L.: Some characterizations of Sturmian words in terms of the lexicographic order. Fundamenta Informaticae 116(1-4), 25–33 (2012)
Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.: Avoiding Abelian powers in binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci. 22(4), 905–920 (2011)
Christou, M., Crochemore, M., Iliopoulos, C.S.: Identifying all abelian periods of a string in quadratic time and relevant problems. Int. J. Found. Comput. Sci. 23(6), 1371–1384 (2012)
Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for abelian periods. Bull. Eur. Assoc. Theoret. Comput. Sci. EATCS 89, 167–170 (2006)
Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and combinatorics. Theoret. Comput. Sci. 410(50), 5227–5235 (2009)
Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Pachocki, J., Radoszewski, J., Rytter, W., Tyczynski, W., Walen, T.: A note on efficient computation of all abelian periods in a string. Inf. Process. Lett. 113(3), 74–77 (2013)
Cummings, L.J., Smyth, W.F.: Weak repetitions in strings. J. Combin. Math. Combin. Comput. 24, 33–48 (1997)
Domaratzki, M., Rampersad, N.: Abelian primitive words. Int. J. Found. Comput. Sci. 23(5), 1021–1034 (2012)
Erdös, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutato. Int. Kozl. 6, 221–254 (1961)
Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, E.: Computing Abelian Periods in Words. In: Proceedings of the Prague Stringology Conference, PSC 2011, pp. 184–196. Czech Technical University in Prague (2011)
Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, E., Smyth, W.F.: Quasi-Linear Time Computation of the Abelian Periods of a Word. In: Proceedings of the Prague Stringology Conference, PSC 2012, pp. 103–110. Czech Technical University in Prague (2012)
Glen, A., Justin, J., Pirillo, G.: Characterizations of finite and infinite episturmian words via lexicographic orderings. European Journal of Combinatorics 29(1), 45–58 (2008)
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, Oxford (1979)
Iliopoulos, C.S., Moore, D., Smyth, W.F.: A Characterization of the Squares in a Fibonacci String. Theoret. Comput. Sci. 172(1-2), 281–291 (1997)
Jenkinson, O., Zamboni, L.Q.: Characterisations of balanced words via orderings. Theoret. Comput. Sci. 310(1-3), 247–271 (2004)
Kociumaka, T., Radoszewski, J., Rytter, W.: Fast algorithms for abelian periods in words and greatest common divisor queries. In: STACS 2013. LIPIcs, vol. 20, pp. 245–256. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)
Kolpakov, R., Kucherov, G.: Finding Maximal Repetitions in a Word in Linear Time. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pp. 596–604. IEEE Computer Society (1999)
Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)
Mignosi, F.: Infinite Words with Linear Subword Complexity. Theoret. Comput. Sci. 65(2), 221–242 (1989)
Mignosi, F.: On the number of factors of Sturmian words. Theoret. Comput. Sci. 82, 71–84 (1991)
Mignosi, F., Pirillo, G.: Repetitions in the Fibonacci infinite word. RAIRO Theor. Inform. Appl. 26, 199–204 (1992)
Mignosi, F., Restivo, A.: Characteristic Sturmian words are extremal for the critical factorization theorem. Theoret. Comput. Sci. 454(0), 199–205 (2012)
Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13(4), 570–581 (1966)
Perrin, D., Restivo, A.: A note on Sturmian words. Theoret. Comput. Sci. 429, 265–272 (2012)
Puzynina, S., Zamboni, L.Q.: Abelian returns in Sturmian words. J. Comb. Theory, Ser. A 120(2), 390–408 (2013)
Pytheas Fogg, N.: Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Math, vol. 1794. Springer, Heidelberg (2002)
Richomme, G., Saari, K., Zamboni, L.: Abelian complexity of minimal subshifts. Journal of the London Mathematical Society 83(1), 79–95 (2011)
Samsonov, A., Shur, A.: On Abelian repetition threshold. RAIRO Theor. Inform. Appl. 46, 147–163 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fici, G., Langiu, A., Lecroq, T., Lefebvre, A., Mignosi, F., Prieur-Gaston, É. (2013). Abelian Repetitions in Sturmian Words. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-38771-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38770-8
Online ISBN: 978-3-642-38771-5
eBook Packages: Computer ScienceComputer Science (R0)