Skip to main content

Challenges and Opportunities for Security with Differential Privacy

  • Conference paper
Information Systems Security (ICISS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8303))

Included in the following conference series:

  • 1222 Accesses

Abstract

Differential Privacy has recently emerged as a measure for protecting privacy in distorted data. While this seems to solve many problems, in practice it still leaves a number of security challenges, and even raises new ones. We give an example of a secure two-party dot product protocol and use this as an example to demonstrate a number of challenges arising from the interaction of information security and differential privacy. We show that independently meeting the requirements of secure multiparty computation and differential privacy does not result in a solution meeting the real goals of privacy and security. Through this, we outline challenges and opportunities for further research.

The rights of this work are transferred to the extent transferable according to title 17 U.S.C. 105.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alaggan, M., Gambs, S., Kermarrec, A.-M.: Private similarity computation in distributed systems: from cryptography to differential privacy. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 357–377. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Clifton, C., Kantarcıoğlu, M., Lin, X., Vaidya, J., Zhu, M.: Tools for privacy preserving distributed data mining. SIGKDD Explorations 4(2), 28–34 (2003)

    Article  Google Scholar 

  3. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Goldreich, O.: Encryption Schemes. The Foundations of Cryptography, vol. 2. Cambridge University Press (2004)

    Google Scholar 

  8. Jiang, W., Murugesan, M., Clifton, C., Si, L., Vaidya, J.: Efficient privacy-preserving similar document detection. VLDB Journal 19(4), 457–475 (2010)

    Article  Google Scholar 

  9. Kantarcioglu, M., Kardes, O.: Privacy-preserving data mining in the malicious model. Int. J. Inf. Comput. Secur. 2(4), 353–375 (2008)

    Google Scholar 

  10. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. McGregor, A., Mironov, I., Pitassi, T., Reingold, O., Talwar, K., Vadhan, S.: The limits of two-party differential privacy. In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS 2010, pp. 81–90. IEEE Computer Society, Washington, DC (2010)

    Chapter  Google Scholar 

  12. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Subcommittee on Disclosure Limitation Methodology, Federal Committee on Statistical Methodology. Report on statistical disclosure limitation methodology. Statistical Policy Working Paper 22 (NTIS PB94-16530), Statistical Policy Office, Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC (May 1994)

    Google Scholar 

  15. Task, C., Clifton, C.: A guide to differential privacy theory in social network analysis. In: The 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), Istanbul, Turkey, August 26-29 (2012)

    Google Scholar 

  16. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Symposium on Foundations of Computer Science, pp. 162–167. IEEE (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clifton, C., Anandan, B. (2013). Challenges and Opportunities for Security with Differential Privacy. In: Bagchi, A., Ray, I. (eds) Information Systems Security. ICISS 2013. Lecture Notes in Computer Science, vol 8303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45204-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45204-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45203-1

  • Online ISBN: 978-3-642-45204-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics