Skip to main content

S2A-Attention for Multimodal 3D Semantic Segmentation Using LiDAR and Cameras in Autonomous Driving

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15284))

Included in the following conference series:

  • 235 Accesses

Abstract

Adding LiDAR for an autonomous driving system will complement the weaknesses of a camera-only solution and enhance its robustness. To fully exploit the multimodal advantage, existing works have proposed various multimodal fusion algorithms to effectively combine LiDAR and camera data for scene and object recognition through 3D semantic segmentation. However, most of these methods leverage softmax-based attention modules for intra-modal feature encoding, and early fusion for inter-modal feature learning, leading to excessive computations and therefore higher latency in semantic segmentation. To mitigate this challenge, we propose the Semantic Segmentation (S2) Agent attention module for 3D semantic segmentation in autonomous driving system using LiDAR and camera. Intra-modal encoding is fully explored instead of early fusion using feature concatenation. We adopt a mid fusion strategy to further reduce computations. Experiments using open benchmark datasets nuScenes and Semantic KITTI show comparable or even better mIoUs than state-of-the-art baseline methods while obtaining better latency performance when compared to the most recent MSeg3D algorithm.

S. Zhang and Y. Guo—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 63.34
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 78.06
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  2. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  3. Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  4. Chen, T.H., Chang, T.S.: Rangeseg: range-aware real time segmentation of 3D lidar point clouds. IEEE Trans. Intell. Veh. 7(1), 93–101 (2021)

    Article  MathSciNet  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Cortinhal, T., Tzelepis, G., Aksoy, E.: Salsanext: fast semantic segmentation of lidar point clouds for autonomous driving (2020)

    Google Scholar 

  7. Han, D., Ye, T., Han, Y., Xia, Z., Song, S., Huang, G.: Agent attention: on the integration of softmax and linear attention. arXiv preprint arXiv:2312.08874 (2023)

  8. Hu, Q., et al.: Randla-net: efficient semantic segmentation of large-scale point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  9. Krispel, G., Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Fuseseg: Lidar point cloud segmentation fusing multi-modal data. Cornell University - arXiv (2019)

    Google Scholar 

  10. Li, J., Dai, H., Han, H., Ding, Y.: MSeg3D: multi-modal 3D semantic segmentation for autonomous driving (2023)

    Google Scholar 

  11. Liu, Y., et al.: Uniseg: a unified multi-modal lidar segmentation network and the openpcseg codebase. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21662–21673 (2023)

    Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  13. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)

    Google Scholar 

  14. Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., Sun, C.: Attention bottlenecks for multimodal fusion. Adv. Neural. Inf. Process. Syst. 34, 14200–14213 (2021)

    Google Scholar 

  15. Park, J., Kim, C., Kim, S., Jo, K.: Pcscnet: fast 3D semantic segmentation of lidar point cloud for autonomous car using point convolution and sparse convolution network. Expert Syst. Appl. 212, 118815 (2023)

    Article  Google Scholar 

  16. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  19. Wang, Y., Shi, T., Yun, P., Tai, L., Liu, M.: Pointseg: real-time semantic segmentation based on 3D lidar point cloud. arXiv preprint arXiv:1807.06288 (2018)

  20. Xia, Z., Pan, X., Song, S., Li, L.E., Huang, G.: Vision transformer with deformable attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4794–4803 (2022)

    Google Scholar 

  21. Xu, C., et al.: SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation, pp. 1–19 (2020)

    Google Scholar 

  22. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  23. Yuan, Y., Chen, X., Wang, J.: Object-Contextual Representations for Semantic Segmentation, pp. 173–190 (2020)

    Google Scholar 

  24. Zermas, D., Izzat, I., Papanikolopoulos, N.: Fast segmentation of 3D point clouds: a paradigm on lidar data for autonomous vehicle applications. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5067–5073. IEEE (2017)

    Google Scholar 

  25. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  26. Zhou, H., et al.: Cylinder3d: an effective 3D framework for driving-scene lidar semantic segmentation. arXiv, Computer Vision and Pattern Recognition (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao He or Lihua Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Guo, Y., Lu, Y., Zeng, K., He, C., Cai, L. (2025). S2A-Attention for Multimodal 3D Semantic Segmentation Using LiDAR and Cameras in Autonomous Driving. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15284. Springer, Singapore. https://doi.org/10.1007/978-981-96-0125-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0125-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0124-0

  • Online ISBN: 978-981-96-0125-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics