Abstract
The profile of a hypergraph onn vertices is (f 0,...,f n ) wheref i denotes the number ofi-element edges. The extreme points of the set of the profiles are determined for Sperner hypergraphs satisfying some additional conditions. The results contain some old theorems of extremal set theory as particular cases.
Similar content being viewed by others
References
Bollobás, B.: Sperner systems consisting of pairs of complementary subsets. J. Comb. Theory (A)15, 363–366 (1973)
Brace, A., Daykin, D.E.: Sperner type theorems for finite sets. In: Combinatorics (Proc. Conf. Combinatorial Math. Oxford, 1972), pp. 18–37. Southend-on-Sea: Inst. Math. Appl. 1972
Clements, G.F., Gronau H.-D.O.F., On maximal antichains containing no set and its complement. Discrete Math.33, 239–247 (1981)
Erdös, P.L., Frankl, P., Katona, G.O.H.: Intersecting Sperner families and their convex hulls. Combinatorica4, 21–34 (1984)
Erdös, P.L., Frankl, P., Katona, G.O.H.: Extremal hypergraph problems and convex hulls. Combinatorica5, 11–26 (1985)
Engel, K., Gronau, H.-D.O.F.: Sperner theory in partially ordered sets. Leipzig: Teubner Verlagsgesellschaft, 1985
Greene, H., Hilton, A.J.W.: Some results on Sperner families. J. Comb. Theory (A)26, 202–209 (1979)
Katona, G.O.H.: Two applications (for search theory and truth functions) of Sperner type theorems. Period. Math. Hung.3, 19–26 (1973)
Kleitman, D., Spencer, J.: Families ofk-independent sets. Discrete Math.6, 255–262 (1973)
Marczewski, E.: Independence d'ensembles et prolongement de mesure. Colloq. Math.1, 122–132 (1984)
Purdy, G.: A result on Sperner collections. Util. Math.13, 95–99 (1977)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Engel, K., Erdös, P.L. Sperner families satisfying additional conditions and their convex hulls. Graphs and Combinatorics 5, 47–56 (1989). https://doi.org/10.1007/BF01788657
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01788657