Skip to main content

Advertisement

Log in

Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 17 July 2013

Abstract

Lipoxygenases (EC. 1.13.11.12) are a non-heme iron enzymes consisting of one polypeptide chain folded into two domains, the N-terminal domain and the catalytic moiety β-barrel domain. They catalyze the dioxygenation of 1Z,4Z-pentadiene moieties of polyunsaturated fatty acids obtaining hydroperoxy fatty acids. For years, the presence of lipoxygenases was considered a eukaryotic feature, present in mammals, plants, small marine invertebrates, and fungi, but now, some lipoxygenase sequences have been detected on prokaryotic organisms, changing the idea that lipoxygenases are exclusively a eukaryotic affair. Lipoxygenases are involved in different types of reactions on eukaryote organisms where the biological role and the structural characteristics of these enzymes are well studied. However, these aspects of the bacterial lipoxygenases have not yet been elucidated and are unknown. This revision discusses biochemical aspects, biological applications, and some characteristics of these enzymes and tries to determine the existence of a subfamily of bacterial lipoxygenases in the context of the phylogeny of prokaryotic lipoxygenases, supporting the results of phylogenetic analyzes with the comparison and discussion of structural information of the first prokaryotic lipoxygenase crystallized and other eukaryotic lipoxygenases structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andreou A, Feussner I (2010) Lipoxygenases—structure and reaction mechanism. Phytochemistry 70:1504–1510

    Article  Google Scholar 

  • Andreou A, Vanko M, Bezakova L, Feussner I (2008) Properties of a mini 9R lipoxygenase from Nostoc sp PCC 7120 and its mutation forms. Phytochemistry 69:1832–1837

    Article  PubMed  CAS  Google Scholar 

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48(3–4):148–170

    Article  PubMed  CAS  Google Scholar 

  • Andreou A, Göbel A, Hammond RC, Feussner I (2010) A bisallyc mini-lipoxygenase from Cyanobacterium cyanothece sp. that has an iron as cofactor. JBC. doi:10.1074/jbc.M109.094771

    Google Scholar 

  • Bae JH, Hou TC, Kim H (2010) Thermostable lipoxygenase is a key enzyme in the conversion of linoleic acid to trihydroxy-octadecenoic acid by Pseudomonas aeruginosa PR3. Biotechnol Bioprocess Eng 15:1022–1030

    Article  CAS  Google Scholar 

  • Bleé E (1995) Oxygenated fatty acids and plant defenses. Inform 6(7):852–861

    Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274(34):23679–23682

    Article  PubMed  CAS  Google Scholar 

  • Busquets M, Deroncelé V, Vidal-Mas J, Rodríguez E, Guerrero A, Manresa A (2004) Isolation and characterization of a lipoxygenase from Pseudomonas 42A2 responsible for the biotransformation of oleic acid into (S)-(E)-10-hydroxy-8-octadecenoic acid. Antonie Van Leeuwenhoek 85(2):129–139

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Xu H, Xia Y, Fang Y (2010) Application of linoleic acid hydroperoxide as a mild and green bleaching agent. In: AIChE Spring Meeting & 6th Global Congress on Process Safety, Conference Proceedings, San Antonio, TX, United States, Mar. 21–25. Vol 1 pp cail/1–8

  • Coffa G, Brash AR (2004) A single active site residue directs oxygenation stereospecificity in olipoxygenases: stereocontrol is linked to the position of oxygenation. PNAS 101:15579–15584

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y, Gurevitz M (2006) In: Dworkin M, Falkow S (eds) The Cyanobacteria—ecology, physiology molecular genetics in the prokaryotes, vol 4. Springer, Berlin, pp 1074–1098

    Google Scholar 

  • Conte L, Macri F, Vianello A (2010) Lipoxygenase and hydroperoxide lyase activities in two olive varieties from Northern Italy. Eur J Lipid Sci Technol 112:780–790

    Article  Google Scholar 

  • Feussner I, Wasternack C (2002) The lypoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  • Fukushige H, Hildebrand D (2005) A simple and efficient system for green note compound biogenesis by use of certain lipoxygenases and hydroperoxide lyase sources. J Agr Food Chem 53:6877–6882

    Article  CAS  Google Scholar 

  • Gao B, Boeglin E, Brash AR (2010) Omega fatty acids are oxygenate at the ´-7 carbon by the lipoxygenase domain of a fusion protein in the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1801:58–63

    Article  PubMed  CAS  Google Scholar 

  • Gargouri M, Ben Akacha N, Kotti F, Ben Rejeb I (2008) Lipoxygenase pathway: vaporization of plant oils and aroma biosynthesis. Biotechnol Agron Soc Environ 12:185–202

    CAS  Google Scholar 

  • Garreta A (2010) Cristal·lizació de la lipoxigenasa de Pseudomonas aeruginosa 42A2 i estudi filogenètic de les subfamilies de les lipoxigenases. PhD thesis. University of Barcelona, Spain

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  PubMed  CAS  Google Scholar 

  • Gounaris Y (2010) Biotechnology for the production of essential oils, flavours and volatile isolates. A review. Flavour Frag J 25:367–386

    Article  CAS  Google Scholar 

  • Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    Article  PubMed  CAS  Google Scholar 

  • Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O’Donnell VB, Kuhn H, Walther M (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503:161–174

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Yamaguchi Y, Uyehara T, Tokoyama T, Namai T, Yamanaka S (1988) Self defensive substances in rice plant against rice blast disease. Tetraheadron Lett 24(43):4715–4718

    Article  Google Scholar 

  • Koeduka T, Kajawara T, Matsui K (2007) Cloning of lipoxygenase genes from a Cyanobacterium, Nostoc punctiforme, and its expression in Escherichia coli. Curr Microbiol 54:315–319

    Article  PubMed  CAS  Google Scholar 

  • Kühn H, Thiele BJ (1999) The diversity of the lipoxygenase family. Many sequences data but little information on biological significance. FEBS Lett 449:7–11

    Article  PubMed  Google Scholar 

  • Kusaka T, Ikeda M (1993) Liquid chromatography-mass spectrometry of fatty acids including hydroxy and hydroperoxy acids as their 3-methyl-7-methoxy-1,4-benzoxazin-2-one derivatives. J Chromatogaphy 639:165–173

    Article  CAS  Google Scholar 

  • Lang I, Göbel A, Heilmann I, Freussner I (2008) A lipoxygenase with linoleate diol synthase activity in Nostoc sp PCC 7120. Biochem J 410:347–357

    Article  PubMed  CAS  Google Scholar 

  • Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiology 163:348–357

    Article  CAS  Google Scholar 

  • Lu X, Zhang J, Liu S, Zhang D, Xu Z, Wu J, Li J, Du G, Chen J (2012) Overproduction, purification and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4457-6

    Google Scholar 

  • Martin-Arjol I, Bassas-Galià M, NBermudo E, Garcia F, Manresa A (2010) Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2. Chem Phys Lipids 163:341–346

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959

    Article  Google Scholar 

  • Murakami N, Shirahashi H, Nagatsu A, Sakakibara J (1992) Two unsaturated 9R-hydroxy fatty acids from the cyanobacterium Anabaena flos-aquae f. flos-aquae. Lipids 27:776–778

    Article  CAS  Google Scholar 

  • Nguyen D, Zhang X, Paice M, Tsang A, Renaud S (2007) Microplate enzyme assay for screening lipoxygenases to degrade wood extractives. Biocatal Biotransform 25:202–210

    Article  CAS  Google Scholar 

  • Oliw EH (2002) Plant and fungal lipoxygenases. Prostg Lipid Med 68–69:313–323

    Article  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21

    Article  PubMed  CAS  Google Scholar 

  • Rudic V, Popova N, Crivova A, Boortseva S, Rastimeshina I (2002) Biosynthesis of lipoxygenase, lipids and its fatty acid composition of actinomycetes and yeast. Roum Biotechnol Lett 7(3):711–716

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Santano E, Pinto M, Macias P (2002) Chlorpromazine oxidation by hydroperoxidase activity of covalent immobilized lipoxygenase. Biotechnol Appl Biochem 36:95–100

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Na P, Porter NA, Brash AR (2007) Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol Rev 14(May):473–488

    Article  CAS  Google Scholar 

  • Sharathchandra K, Rajashekhar M (2011) Total lipid and fatty acid composition in some freshwater Cyanobacteria. J Algal Biomass Utln 2:83–97

    Google Scholar 

  • Shibata D, Axelrod B (1995) Plant lipoxygenases. J Lipid Mediat Cell Signalling 12:213–222

    Article  CAS  Google Scholar 

  • Shimahara K (1964) Peroxidation of soy bean oil by lipoxygenase-forming bacteria (Gram-negative, rod-shaped) isolated from garbage. Kogio Kagaku Zasshi 67:1164–1168

    Article  CAS  Google Scholar 

  • Shimahara K, Hashizume Y (1973) Properties of a lipoxygenase-like enzyme produced by Pseudomonas aeruginosa strain A-4. J Ferment Technology 51:183–189

    CAS  Google Scholar 

  • Su C, Oliw EH (1998) Manganese lipoxygenase. Purification and characterization. J Biol Chem 273:13072–13079

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ (2004) The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci 101(7):2135–2139

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Xu Y, Li L, Kuang T (2000) Membrane lipids and their fatty acid composition in Nostoc flagelliforme cells. Acta Botanica Sinica 12:1263–1266

    Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucl Acid Res Mol Biol 72:165–221

    Article  CAS  Google Scholar 

  • Zhang C, Tao T, Ying Q, Zhang D, Lu F, Bie X, Lu Z (2012) Extracellular production of lipoxygenase from Anabaena sp. PCC7120 in Bacillus subtilis and its effect on wheat protein. Appl Microbiol Biot 94:949–958

    Article  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (eds) (1965) Evolutionary divergence and convergence in proteins. Academic, New York, pp 97–166, Edited in Evolving Genes and Proteins

    Google Scholar 

Download references

Acknowledgments

The financial support of the Comissió Interdepartamental de Recerca i Tecnologia CIRIT project 2009GR0819 and the Ministerio de Economia y Competitividad (CICYT, project CTQ2010-21183-C02-01 and project HBP2006-0027) of the Ministerio de Educación y Ciencia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Manresa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J., Garreta, A., Benincasa, M. et al. Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol 97, 4737–4747 (2013). https://doi.org/10.1007/s00253-013-4887-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4887-9

Keywords