Abstract
Objective assessment of image quality seeks to predict image quality without human perception. Given that the ultimate goal of a blind/no-reference image quality assessment (BIQA) algorithm is to provide a score consistent with the subject’s prediction, it makes sense to design an algorithm that resembles human behavior. Recently, a large number of image features have been introduced to image quality assessment. However, only a few of these features are generated by using the computational mechanisms of the visual cortex. In this paper, we propose bioinspired algorithms to extract image features for BIQA by simulating the visual cortex. We extract spatial features like texture and energy from images by mimicking the retinal circuit. We extract spatial-frequency features from images by imitating the simple cell of the primary visual cortex. And we extract color features from images by employing the color opponent mechanism of the biological vision system. Then, by using the statistical features derived from these physiologically plausible features, we train a support vector regression model to predict image quality. The experimental results show that the proposed algorithm is more consistent with subjective evaluations than the comparison algorithms in predicting image quality.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability statements
All data generated or analyzed during this study are included in this published article and are freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality.
References
Wang, Z., Bovik, A.C.: Modern image quality assessment. Synth. Lectures Image Video Multimedia Process. 2(1), 156 (2006). https://doi.org/10.2200/S00010ED1V01Y200508IVM003
Thung, K.H., Raveendran, P.: A survey of image quality measures. Int. Conf. Tech. Postgraduates (TECHPOS) 2009, 1–4 (2009). https://doi.org/10.1109/TECHPOS.2009.5412098
Ruderman, D. L.:The statistics of natural images. Netw. Comput. Neural Syst. 5(4), 517–548 (1994). https://doi.org/10.1088/0954-898X_5_4_006
Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010). https://doi.org/10.1109/LSP.2010.2043888
Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011). https://doi.org/10.1109/TIP.2011.2147325
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012). https://doi.org/10.1109/TIP.2012.2214050
Liu, L., Wang, T., Huang, H.: Pre-attention and spatial dependency driven no-reference image quality assessment. IEEE Trans. Multimedia 21(9), 2305–2318 (2019). https://doi.org/10.1109/TMM.2019.2900941
Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–31 (2015). https://doi.org/10.1109/TIP.2015.2439035
Joshi, P., Prakash, S., Rawat, S.: Continuous wavelet transform-based no-reference quality assessment of deblocked images. Vis. Comput. 2934(12), 1739–1748 (2018). https://doi.org/10.1007/s00371-017-1460-z
Ji, J., Xiang, K., Wang, X.: Scvs: blind image quality assessment based on spatial correlation and visual saliency. Vis. Comput. (2022). https://doi.org/10.1007/s00371-021-02340-x
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013). https://doi.org/10.1109/LSP.2012.2227726
Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015). https://doi.org/10.1109/TIP.2015.2426416
Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012). https://doi.org/10.1109/TIP.2012.2191563
Nizami, I. F., Rehman, M. U., Majid, M., Anwar, S. M.: Natural scene statistics model independent no-reference image quality assessment using patch based discrete cosine transform. Multimedia Tools Appl. 79(2), (2020). https://doi.org/10.1007/s11042-020-09229-2
Gupta, P., Moorthy, A. K., Soundararajan, R., Bovik,A. C.: Generalized gaussian scale mixtures: A model for wavelet coefficients of natural images. Signal Process. Image Commun. (2018) S0923596518303710 https://doi.org/10.1016/j.image.2018.05.009
Li, C., Guan, T., Zheng, Y., Zhong, X., Bovik, A.: Blind image quality assessment in the contourlet domain. Signal Process. Image Commun. 91(5), 116064 (2021). https://doi.org/10.1016/j.image.2020.116064
Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. IEEE Conf. Comput. Vis. Pattern Recog. 2014, 1733–1740 (2014). https://doi.org/10.1109/CVPR.2014.224
Kim, J., Nguyen, A.-D., Lee, S.: Deep cnn-based blind image quality predictor. IEEE Trans. Neural Netw. Learn. Syst. 30(1), 11–24 (2019). https://doi.org/10.1109/TNNLS.2018.2829819
Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 30(1), 36–47 (2020). https://doi.org/10.1109/TCSVT.2018.2886771
Zhu, H., Li, L., Wu, J., Dong, W., Shi, G.: Metaiqa: Deep meta-learning for no-reference image quality assessment. IEEE/CVF Conf. Comput. Vis. Pattern Recogn. (CVPR) 2020, 14131–14140 (2020). https://doi.org/10.1109/CVPR42600.2020.01415
Ma, J., Wu, J., Li, L., Dong, W., Xie, X.: Active inference of gan for no-reference image quality assessment. IEEE Int. Conf. Multimedia Expo (ICME) 2020, 1–6 (2020). https://doi.org/10.1109/ICME46284.2020.9102895
Wu, J., Lin, W., Shi, G., Li, L., Fang, Y.: Orientation selectivity based visual pattern for reduced-reference image quality assessment. Inf. Sci. 351, 18–29 (2016). https://doi.org/10.1016/j.ins.2016.02.043
Wu, J., Zeng, J., Dong, W., Shi, G., Lin, W.: Blind image quality assessment with hierarchy: Degradation from local structure to deep semantics. J. Vis. Commun. Image Rep. 58, 353–362 (2019). https://doi.org/10.1016/j.jvcir.2018.12.005
Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2015). https://doi.org/10.1109/TMM.2014.2373812
Kaneko, Akimichi: Receptive field organization of bipolar and amacrine cells in the goldfish retina. J. Physiol. 235(1), 133–53 (1973). https://doi.org/10.1113/jphysiol.1973.sp010381
Dacey, D., Packer, O.S., Diller, L., Brainard, D., Lee, B.: Center surround receptive field structure of cone bipolar cells in primate retina. Vis. Res. 40(14), 1801–1811 (2000). https://doi.org/10.1016/S0042-6989(00)00039-0
Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959). https://doi.org/10.1113/jphysiol.1959.sp006308
Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968). https://doi.org/10.1113/jphysiol.1968.sp008455
Ts’O, D., Gilbert, C.: The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8(5), 1712–1727 (1988). https://doi.org/10.1523/jneurosci.08-05-01712.1988
Lennie, P., Krauskopf, J., Sclar, G.: Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10(2), 649–69 (1990). https://doi.org/10.1523/JNEUROSCI.10-02-00649.1990
David Berga, X. O. V. L. X. M. P., Xose R.: Fdez-Vidal, Psychophysical evaluation of individual low-level feature influences on visual attention. Vis. Res. 154, 60–79 (2019). https://doi.org/10.1016/j.visres.2018.10.006
Laurent Itti, C. K., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998). https://doi.org/10.1109/34.730558
Berman, M.G., Hout, M.C., Kardan, O., Hunter, M.R., Yourganov, G., Henderson, J.M., Hanayik, T., Karimi, H., Jonides, J.: The perception of naturalness correlates with low-level visual features of environmental scenes. PloS One 9(12),(2014). https://doi.org/10.1371/journal.pone.0114572
Kardan, O., Demiralp, E., Hout, M. C., Hunter, M. R., Karimi, H., Hanayik, T., Yourganov, G., Jonides, J., Berman, M. G.: Is the preference of natural versus man-made scenes driven by bottom-up processing of the visual features of nature?. Front. Psychol. 6 (2015). https://doi.org/10.3389/fpsyg.2015.00471
Valeton, J.: Photoreceptor light adaptation models: an evaluation. Vis. Res. 23(12), 1549–1554 (1983). https://doi.org/10.1016/0042-6989(83)90168-2
Beaudot, H. A.: William, Sensory coding in the vertebrate retina: towards an adaptive control of visual sensitivity. Netw. Comput. Neural Syst. 7(2), 317–323 (1996). https://doi.org/10.1088/0954-898X_7_2_012
Kolb, Helga: How the retina works. Am. Sci. 91(1), 28–35 (2003)
Rajalakshmi, T., Prince, S.: Retinal model-based visual perception: applied for medical image processing. Biol. Insp. Cognit. Arch. 18, 95–104 (2016). https://doi.org/10.1016/j.bica.2016.09.005
Benoit, A., Caplier, A., Durette, B., Herault, J.: Using human visual system modeling for bio-inspired low level image processing. Comput. Vis. Image Understand. 114(7), 758–773 (2010). https://doi.org/10.1016/j.cviu.2010.01.011
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962). https://doi.org/10.1113/jphysiol.1962.sp006837
Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4(12), 2379–2394 (1987). https://doi.org/10.1364/JOSAA.4.002379
Zhang, Y., Chandler, D.M.: No-reference image quality assessment based on log-derivative statistics of natural scenes. J. Electron. Imag. 22(4), 1–23 (2013). https://doi.org/10.1117/1.JEI.22.4.043025
Pridmore, R.W.: A new transformation of cone responses to opponent color responses. Attention Percep. Psychophys. 83(1218), 1797–1803 (2021). https://doi.org/10.3758/s13414-020-02216-7
Ruderman, D.L., Cronin, T.W., Chiao, C.-C.: Statistics of cone responses to natural images: implications for visual coding. J. Opt. Soc. Am. A 15(8), 2036–2045 (1998). https://doi.org/10.1364/JOSAA.15.002036
Lasmar,N.-E., Stitou, Y., Berthoumieu, Y.: Multiscale skewed heavy tailed model for texture analysis. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2281–2284 (2009). https://doi.org/10.1109/ICIP.2009.5414404
Sheikh, H., Sabir, M., Bovik, A.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006). https://doi.org/10.1109/TIP.2006.881959
Chandler, L.D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electronic Imag. 19(1), 011006 (2010). https://doi.org/10.1117/1.3267105
Ponomarenko, N., Jin, L., Ieremeiew, O., et al.: Image database tid2013: peculiarities, results and perspectives. Signal Process. Image Commun. 30, 57–77 (2015). https://doi.org/10.1016/j.image.2014.10.009
Ghadiyaram, D., Bovik, A.C.: Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image Process. 25(1), 372–387 (2016). https://doi.org/10.1109/TIP.2015.2500021
Hosu, V., Lin, H., Sziranyi, T., Saupe, D.: Koniq-10k: an ecologically valid database for deep learning of blind image quality assessment. IEEE Trans. Image Process. 29, 4041–4056 (2020). https://doi.org/10.1109/TIP.2020.2967829
Fang, Y., Zhu, H., Zeng, Y., Ma, K., Wang, Z.: Perceptual quality assessment of smartphone photography. IEEE/CVF Conf. Comput. Vis. Pattern Recogn. (CVPR) 2020, 3674–3683 (2020). https://doi.org/10.1109/CVPR42600.2020.00373
Li, Q., Lin, W., Gu, K., Zhang, Y., Fang, Y.: Blind image quality assessment based on joint log-contrast statistics. Neurocomputing 331, 189–198 (2019). https://doi.org/10.1016/j.neucom.2018.11.015
Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment, in. IEEE Conf. Comput. Vis. Pattern Recogn. 2012, 1098–1105 (2012). https://doi.org/10.1109/CVPR.2012.6247789
Xu, J., Ye, P., Li, Q., Du, H., Liu, Y., Doermann, D.: Blind image quality assessment based on high order statistics aggregation. IEEE Trans. Image Process. 25(9), 4444–4457 (2016). https://doi.org/10.1109/TIP.2016.2585880
Ghadiyaram, D., Bovik, A.C.: Perceptual quality prediction on authentically distorted images using a bag of features approach. J. Vis. 17(1), 32–32 (2017). https://doi.org/10.1167/17.1.32
Yang, S., Jiang, Q., Lin, W., Wang, Y.: Sgdnet: An end-to-end saliency-guided deep neural network for no-reference image quality assessment. In: the 27th ACM International Conference, (2019). https://doi.org/10.1145/3343031.3350990
Su, S., Yan, Q., Zhu, Y., Zhang, C., Ge, X., Sun, J., Zhang, Y.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. IEEE/CVF Conf. Comput. Vis. Pattern Recogn. (CVPR) 2020, 3664–3673 (2020). https://doi.org/10.1109/CVPR42600.2020.00372
Acknowledgements
We would like to thank the anonymous reviewers for their valuable suggestions on improving the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cai, R., Fang, M. Blind image quality assessment by simulating the visual cortex. Vis Comput 39, 4639–4656 (2023). https://doi.org/10.1007/s00371-022-02614-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-022-02614-y